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Abstract

We develop a model of favor exchange in a network setting where
the cost of performing favors is stochastic. For any given favor ex-
change norm, we allow for the endogenous determination of the net-
work structure via a link deletion game. We characterize the set of
stable as well as equilibrium systems and show that these sets are iden-
tical. The most efficient network topology and favor exchange conven-
tion are generically shown to be not supported as equilibrium of the
link deletion game. Our model provides a useful framework for under-
standing the topology of favor exchange networks. While the model
exhibits positive externalities, its properties differ from the “informa-
tion transmission” model à la Jackson and Wolinsky, as evidenced
by the emergence of regular networks as opposed to star networks as
stable and efficient network structures.

JEL Classification Codes: D85, C78, L14, Z13.

1 Introduction

Economists and social scientists have long been interested in relationships
of favor exchange. Indeed, favor exchange forms an integral part of human

∗The authors would like to thank Murali Agastya, Uwe Dulleck, Carlos Pimienta, Bill
Schworm, John Wooders and the seminar participants at The University of Adelaide,
UNSW, UTS, AETW 2012 and SAET 2012 for their valuable comments.
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interactions, be it in a local neighborhood, a workplace, an ethnic group, or
even an online community.

In our social life, two salient features of favor exchanges prevail: First,
exchanges are reciprocal; agents regularly find themselves both giving and
receiving favors. Second, each community develops norms regarding when
it is appropriate to turn down a favor request, and when it is not. These
norms are enforced via the threat of discontinuation of the relationship, either
bilaterally or multilaterally.

Until recently, most of the scholarly work on patterns of favor exchanges
used pre-determined network structures as grids on which such interactions
took place (see, e.g. Neilson [8]). However, a recent paper by Jackson et al
[5] made the first attempt to simultaneously determine both the evolution of
a network structure and the pattern of favor exchange on it. In this paper
we further explore this agenda by providing a non-cooperative foundation of
the network structure using a simultaneous move link-deletion game.

We model the informal exchange of favors in a network where the need for
favors arises randomly and the value of a favor is exogenous, while the cost of
providing a favor is stochastic. The community follows a social norm whereby
when asked for a favor, an agent is expected to provide it as long as her cost
is not too high. This social norm is denoted by a convention c∗ such that for a
cost below c∗ one is expected to oblige to a favor request. The stochasticity of
the cost is a novel feature of our model that offers a more realistic framework.
In addition, various social norms with a more or less demanding obligation
to perform favors can be captured through higher or lower conventions c∗.
When in need of a favor, an agent approaches the least cost provider, among
her neighbors, who then decides whether or not to perform the favor. Agents
can detect violations of the convention and exclude from the network those
who refuse to conform.1 Such punishment captures the common sense idea
that people take a dim view of a non-provider if she is seen to be refusing
a favor in spite of having a reasonably low cost of obliging. Our aim is to
co-determine a system, i.e., a network structure-convention pair for a given
favor value, that supports the exchange of favors in the community.

Our analysis yields several results, such as the existence of multiple Par-

1We are implicitly assuming that the favor exchange network is embedded in an infor-
mation exchange network such that each agent is able to obtain information about the
compliance (or otherwise) of each of her neighbors dealings in their respective neighbor-
hood. This is considerably weaker than the complete information assumption in Jackson
et al.
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ticipation Compatible, (restricted) Pairwise Stable and Nash Equilibrium
systems. Participation Compatibility refers to the strictly positive expected
utility agents derive from being part of the favor exchange community. Re-
stricted Pairwise Stability is an adaptation to our link deletion game of the
traditional notion of Pairwise Stability, whereby an agent has no incentives
to delete a link. It is similar to the one employed by Jackson et al [5] and cap-
tures the idea that it takes time and coordination to form a new link while an
existing link can be unilaterally severed. Finally, Nash Equilibrium systems
are those resistant to multiple link deletions. Interestingly, we show that the
set of Nash Equilibrium systems and the set of (restricted) Pairwise Stable
systems are identical. This result, which had been previously proven for non-
stochastic link maintenance cost (see Calvó-Armengol and Ilkilic [2]), thus
applies to a more general environment. Furthermore, we identify efficient
systems and show that the most efficient system is generically not stable.
This result emanates from the fact that there is a positive externality (on to
neighbors) from an agent having additional links, which is not internalized
by the agent. Also, we show that, the favor efficient system requires its net-
work to be complete. The rest of the paper is organized as follows: Section
2 presents the model and characterizes the expected utility of an agent; Sec-
tion 3 describes Participation Compatible, (Restricted) Pairwise Stable and
Nash Equilibrium systems, and their interrelationship; efficient systems and
their stability are analyzed in Section 4; Section 5 discusses the results in
context of the existing literature and concludes. All proofs and calculations
are relegated to the Appendix.

2 The Model

2.1 General Framework

In this section, we describe the basic framework for studying favor exchange
in a social network setting. Consider a finite set N = {1, 2, ..., N} (where
N ≥ 3) of agents connected in a social network represented by an undirected
graph. A network g is a set of unordered pairs of agents {i, j} denoting those
agents which are joined.

The complete network gN−1 is the set of all possible subsets of N of
size 2. The set of all possible networks on N is then {g|g ⊆ gN−1}. We
use g \ {i, j} for the network g with link {i, j} removed. We denote Ni(g) =
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{j | {i, j} ∈ g} the set of agents who have a relationship with agent i in social
network g. Agents in Ni(g) are agent i’s neighbors, and di(g) = |Ni(g)| is
the cardinality of the set Ni(g). Where possible, we use di and Ni instead of
di(g) and Ni(g) for brevity. We focus our analysis on non-empty connected
networks. However, it can be extended to disconnected networks by analyzing
each connected components separately.

Each agent in the network may need favors from, and perform favors
for, her neighbors. In particular we assume that each agent has an equal
probability 1

N
of needing a favor. This contrasts with the basic framework of

Jackson et al [5] where each pair has a given probability of being in a favor
exchange relationship. In their set-up the probability that one needs a favor
as well as that one receives a favor increases with the number of neighbors.
Our set-up is different: an agent gets more requests for favors as the number
of neighbors increases but he does not need more favors. The value of getting
the favor is exogenous and 0 < v <∞. The cost ci incurred by agent i from
performing a favor is drawn from an iid, uniform distribution over [0, 1]2.
We assume that every agent can observe the realization of the costs of all
her neighbors, and when in need of a favor, an agent asks her lowest cost
neighbor to provide it.

When asked for a favor, there is an obligation to perform it provided the
cost of performing it is not “too high”; this is the social norm governing the
favor exchange in the community. In particular, there exists a cost threshold
c∗ such that an agent i is supposed to perform (not perform) the favor when
ci ≤ c∗ (ci > c∗). Adherence to this convention is enforced by the threat of
expulsion from the network in the event of non-compliance. The convention
c∗, which applies to all agents in the network, captures the tolerance level of
the population; a society with a lower c∗ is more tolerant of non-performance
of favors.

Positing the existence of a favor exchange norm is an innovation of our
paper. This approach, in contrast to the existing literature on network for-
mation, endogenizes the benefits and, in particular, the costs of maintaining
a link.

2Our results hold for more general distributions; however, the uniform distribution
enables us to characterize closed form solutions.
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2.2 Expected Utility

The expected payoff agent i anticipates, from being in network g where con-
vention c∗ prevails and the value of a favour is v, is denoted EU i(g, c∗; v). It
is composed of two elements: the gain from the favors her neighbors can po-
tentially perform for her; the expected cost incurred by performing favors for
some neighbors. The social welfare is then obtained by summing up the ex-
pected utilities across all individuals. Formally, social welfare can be written
as

1

N
v ·
∑
i

Fi(c
∗)− 1

N

∑
i

{
∑
j∈Ni

Fji(c
∗) · Ej(c

∗)} (1)

where Ej(c
∗) stands for E(cj|cj ≤ c∗)], i.e., the expected cost of a favor done

for j, Fji denotes the probability that i provides the favor needed by j and Fi

denotes the probability that i received a favor when needed. By rearranging
the summation we can express the same formula in terms of the sum of the
individual benefits from a favor minus the social cost, borne by the neighbors,
of performing the favor, i.e., the social welfare can be written as

1

N

N∑
i=1

[v − Ei(c
∗)] · Fi(c

∗) (2)

While most of our qualitative results hold for more general cost distributions,
we will be using the uniform distribution for costs to provide closed form
solutions. Hence, it is useful to establish the following claim.

Claim 1 When costs are i.i.d, according to a uniform distribution on [0, 1]
then the expected utility of an individual i under a convention c∗ is given by

EU i(g, c∗; v) = v · [1− (1− c∗)di ] (3)

−
∑

j∈Ni(g)

1

dj

{
1

dj + 1
− c∗(1− c∗)dj − 1

dj + 1
(1− c∗)dj+1

}

Proof: See Appendix.

Changes in agent i’s degree may or may not be beneficial for her; it
depends on the value of c∗ and v. However, we can show that an increase in
the degree of at least one of agent i’s neighbors provides her with an increased
level of expected utility.
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Lemma 1 Let g′ = g ∪ {j, k} where k 6= i and j ∈ Ni(g). Then, given c∗

and v, we have EU i(g′, c∗; v) ≥ EU i(g, c∗; v).

Proof: See Appendix.

To understand the intuition behind Lemma 1, consider agent j who is
agent i’s neighbor. The more neighbors agent j has, the more likely it is
that she will approach someone other than agent i for a favor. Hence, agent
j having more neighbors decreases agent i’s expected cost while keeping her
expected benefits unchanged. As we will discuss later, this feature differen-
tiates our model from the “information exchange networks” and “co-author
networks” examined in Jackson and Wolinski [4]. In the former, there is
always a benefit from adding more indirect links of any order n (not just
n = 2), while in the latter, there is a crowding out effect of having second
order indirect links.

3 Participation, Pairwise Stability and Equi-

librium

3.1 Participation Compatibility

We assume that non participating agents, i.e., those who decide to stay out
of the network, get a utility of zero. Therefore, an agent participates in the
network if and only if she expects positive utility from it. As a tie-breaking
convention, agents with zero expected utility, although indifferent, are as-
sumed to stay out of the network. We refer to the condition EU i(g, c∗; v) > 0
for all i ∈ N as the Participation Compatibility condition.

Definition 1 (Participation Compatibility) A system (g, c∗; v) is said
to be Participation Compatible if EU i(g, c∗; v) > 0, for all i ∈ N .

To identify whether such systems exist, we first restrict our attention to
star networks gSi,N−1

. In that case, agent i, the centre of the star, has a link
with every other agent in the network, while her neighbors have one link
each. Technically, this means that

Ni(gSi,N−1
) = {1, 2, ..., i− 1, i+ 1..., N}
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and
Nj(gSi,N−1

) = {i} for all j ∈ N \ {i} .

We therefore have

EU i(gSi,N−1
, c∗; v) = v[1− (1− c∗)N−1]− N − 1

2
(c∗)2 (4)

The next lemma states that there always exists a (non-zero) convention
such that the star agent in a star network gets strictly positive expected
utility. This holds for any value v.

Lemma 2 Given v, there exist c∗i ∈ (0, 1] such that,

EU i (gSi,N−1, c
∗
i ; v) > 0.

Proof: See Appendix.

Our interest in star networks is intentional: given a network g with N
agents, we can focus on the N star networks formed by each agent i ∈ N
and their neighborhood. Applying Lemma 2, we then find c∗ such that all
N systems are Participation Compatible. Finally, by invoking Lemma 1, we
establish the following Theorem.

Theorem 1 For any value v and any network g, there exist c∗ ∈ (0, 1] such
that (g, c∗; v) is Participation Compatible.

Proof: See Appendix.

While Theorem 1 is presented in terms of finding a convention c∗ for a
given network g, the reader may, depending on the context, find it more
natural to think of finding a network g for a given social norm c∗ such that
the system g, c∗; v is Participation Compatible. This is the dual problem.
We will later revisit this problem and show there exists an upper bound
such that for any c∗ below it, one can find a network g that is Participation
Compatible. Therefore, one can always modify a system, either by changing
g or c∗, to make it Participation Compatible. However, whether or not such
system can be maintained relies on whether any agent has any incentives to
modify the structure of her neighborhood.
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3.2 Restricted Pairwise Stability

For a given system (g, c∗; v) to remain unchanged, it has to be that no agent
is better off by severing links with any of her neighbors. This is part of
the condition of Pairwise Stability. However, since we focus exclusively on
link deletion, we need to adapt the requirements of Pairwise Stability to our
environment; we hence consider Restricted Pairwise Stability.

Definition 2 (Restricted Pairwise Stability) A system (g, c∗; v) is said
to be Restricted Pairwise Stable if, for all i ∈ N and all j ∈ Ni(g):

EU i(g, c∗; v) ≥ EU i(g \ {ij}, c∗; v) and EU j(g) ≥ EU j(g \ {ij}, c∗; v)

Similarly to the Participation Compatibility analysis, the problem can
be interpreted as identifying a convention such that the system (g, c∗; v) is
Restricted Pairwise Stable (RPS).

Theorem 2 Given any value v and network g, there exists c∗RPS such that
(g, c∗; v) is Restricted Pairwise Stable for any c∗ ∈ [0, c∗RPS].

Proof: See Appendix.

We will later on show the dual problem, of finding a network g for a given
convention c∗ such that the system (g, c∗; v) is RPS, can be solved for any
convention below an upper bound.

Given v and g, the RPS condition between agent i and agent j ∈ Ni(g),
which states that agent i prefers to keep her link with agent j rather than
deleting it, can be written as:

vc∗ij(1− c∗ij)di−1 ≥
1

dj

{
1

dj + 1
− c∗ij(1− c∗ij)dj −

1

dj + 1
(1− c∗ij)dj+1

}
(5)

Denote c̃∗i = minj∈Ni

{
c̃∗ij
}

, where c̃∗ij is the highest c∗ij for which Equation
5 holds. It can be shown that the RPS condition holds between agent i and
any agent j ∈ Ni when c∗i ∈ [0, c̃∗i ]. Thus, for a system (g, c∗; v) to be RPS,
it has to be that c∗ ≤ c∗RPS, where c∗RPS = mini∈N {c̃∗i }. In effect, it means
that the most tolerant agent, i.e. the one requiring the lowest convention, is
also the one who imposes her preferences on others. We refer to this agent
as the Dictator of Tolerance. Formally,
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Definition 3 (Dictator of Tolerance) Given a system (g, c∗; v), if c̃∗i =
c∗RPS, then agent i is called The Dictator of Tolerance.

Obviously, there always exists a Dictator of Tolerance. Hence, given a
network g and value v, it is always possible to characterize a RPS system by
adopting a convention for which the Dictator of Tolerance has no incentives
to delete links.

We now investigate whether a RPS system is also Participation Com-
patible. It turns out that RPS requirements suffice to ensure Participation
Compatibility, as stated in Proposition 1.

Proposition 1 If the system (g, c∗; v) where c∗ ∈ (0, c∗RPS] is Restricted
Pairwise Stable, then it is Participation Compatible.

Proof: See Appendix.

The Participation Compatible condition guarantees positive expected util-
ity from the favor exchange system. At the same time, the RPS one insures
that no agent desires to sever links with her neighbors. This leads to the for-
mal definition of a strategy in our environment, and to the characterization
of the conditions required for such RPS systems to be in equilibrium.

3.3 Equilibrium

We study a game similar to the network formation literature.3 However, our
model differs in one important aspect: agents are initially endowed with a
network g where convention c∗ prevails and then choose which links they
would like to keep. Our game is not one of network formation, but one of
link deletion.

Starting with initial network g, each agent i ∈ N simultaneously an-
nounces which of the links {ij} for all j ∈ Ni(g) she intends to keep.
Si = {0, 1}N−1 is agent i’s set of pure strategies. The generic strategy si ∈ Si

is an (N − 1)-tuple, such that si = (si1, ..., si,i−1, si,i+1..., siN).
If agent i opts to keep her link with agent j, then sij is one; otherwise,

it is zero. Because agents can only delete links, we impose that if {ij} is
not in the initial network g, then sij = sji = 0. As is standard, mutual

3For instance: Jackson [4], Goyal and Joshi [3], Calvó-Armengol [2]. Also see Jackson
2004 for an excellent survey.
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consent is necessary for maintaining links, i.e. {ij} is maintained if and only
if sij = sji = 1.

Let S = S1 × S2 × ... × SN . A strategy profile s = (s1, s2, ..., sn) ∈ S
thus induces a network g(s). The mapping S 7→ gN is not one-to-one since
sij 6= sji and sij = sji = 0 both result in {ij} being absent from the network.

Before considering the system in its entirety, we first focus on the meaning
and consequences in network terms from considering a Nash Equilibrium
strategy profile.

Definition 4 (Nash Equilibrium Network) A network g is a Nash Equi-
librium Network if there exists a strategy profile s which constitutes a Nash
Equilibrium strategy profile for the normal form link deletion game with ini-
tial network g and

g = g(s)

where g(s) is the network induced by s.

Since a link can only be maintained through mutual agreement, a Nash
Equilibrium network can only be mapped back to a unique strategy profile,
as stated by the following Lemma.

Lemma 3 Any Nash Equilibrium Network admits a unique strategy profile.

Now that the potential complications induced by a mapping that is not
one-to-one have been addressed, we present our definition of Nash Equilib-
rium Systems.

Definition 5 (Nash Equilibrium System) A system (g, c∗; v) is said to
be a Nash Equilibrium System if its network g is a Nash Equilibrium Network.

We began our analysis by characterizing RPS systems of favor exchange
on a network. We then introduced the noncooperative notion of a Nash
equilibrium of a link deletion game. Our next result shows that the two
concepts, coming while emanating from different motivations, are closely
linked.

Theorem 3 A system (g, c∗; v) is Restricted Pairwise Stable if and only if
it is a Nash Equilibrium System.
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Proof: See Appendix.

The “if” part of the proof is trivial. The “only if” part of the proof in-
volves showing that a Nash Equilibrium System is characterized by a one-shot
deviation property, i.e., if deleting one link is not profitable, then deleting
any subset of links is not profitable either.

The absence of closed-form solutions restricts our analysis to the exis-
tence, rather than the characterization, of systems that fulfill all three re-
quirements: Participation Compatible, Restricted Pairwise Stable and Nash
Equilibrium System. However, in the next section, we address the question
of efficiency of such systems and provide, for particular network topologies,
very prescriptive results.

4 Efficient Systems

4.1 General Results

In this section, we focus on the efficiency of a system in the traditional sense.
Given some network g and value v, we investigate whether there exists a
convention c∗ such that ΣN

i=1EU
i(g, c∗; v) is maximized. We find that such

systems exist, although they may not be equilibria.

Definition 6 (Convention Efficiency) A system (g, c∗; v) is said to be
Convention Efficient if for all c∗

′

ΣN
i=1EU

i(g, c∗; v) ≥ ΣN
i=1EU

i(g, c∗
′
; v).

Our first efficiency result is intuitive: it states that for given a network g, a
Convention Efficient system is found by adopting the convention that equates
the marginal cost of providing a favor with its marginal benefit (subject to
the boundary conditions).

Proposition 2 Given a network g and value v, the system (g, c∗; v) is Con-
vention Efficient if and only if c∗ = min{v, 1}.

Proof: See Appendix.

Although attractive, Convention Efficient systems are only desirable if
they can be maintained, i.e., if they are Nash Equilibria. A Nash Equilibrium
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System can arise only if the value v of performing a favor is below c∗RPS.
Recall that c∗RPS is the highest convention that the Dictator of Tolerance is
willing to follow without deleting links.

Theorem 4 Given a network g, if v > c∗RPS, then no Nash Equilibrium
System (g, c∗; v) is Convention Efficient.

Proof: This follows directly from the proof of Theorem 2 where it is
shown that c∗RPS < 1, and Proposition 2. 2

In the next subsection we provide complete characterizations of Nash
Equilibrium Systems and their efficiency properties for particular network
topologies that commonly arise in the network literature.

4.2 Specific Network Topologies

In what follows, we take a close look at star and regular networks. For
star networks, we find the sufficient condition on v that ensures the system
(gSi,N

, c∗; v) is a Convention Efficient Nash equilibrium. We present this
result in the following Proposition:

Proposition 3 The Convention Efficient system (gSi,N−1
, c∗; v) is a Nash

Equilibrium System if v ≤ 1− (1
2
)

1
N−2 .

Proof: See Appendix.

For regular networks, we also identify the sufficient condition on v for
which a Convention Efficient system is an Nash equilibrium. A network is
said to be a regular network of degree n if each agent has exactly n links.

Proposition 4 Consider gn, the regular network of degree n.
The Convention Efficient system (gn, c

∗; v) is a Nash Equilibrium System if

v ≤ 1−
(
n−1
2n

) 1
n+1 .

Proof: See Appendix.

Proposition 4 allows us to present the dual results corresponding to The-

orem 1 and Theorem 2. Given any c∗ ≤ v ≤ 1 −
(
n−1
2n

) 1
n+1 , we can find
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a network g, namely the regular network of degree n, that will satisfy the
Participation and Restricted Pairwise Stability constraints.

Although this paper takes the initial network as given, it is natural to
question whether a particular topology can provide consistently a higher
sum of expected utilities.

Definition 7 (Network Efficiency) Given v and c∗, a system (g, c∗; v) is
said to be Network Efficient if

ΣN
i=1EU

i(g, c∗; v) ≥ ΣN
i=1EU

i(g′, c∗; v).

Not surprisingly, the complete network, gN−1, where each agent has links
with all other agents in the system, presents such characteristic.

Lemma 4 For all c∗ ≤ v, the system (gN−1, c
∗; v) is a Network Efficient

system.

Proof : See Appendix.

However, restrictions on v are required in order for (gN−1, c
∗; v) to also

be a Nash Equilibrium System.

Proposition 5 If v ≤ 1−
(

N−2
2(N−1)

) 1
N

and c∗ = v, then (gN−1, c
∗; v) is both,

a Convention Efficient and a Network Efficient Nash Equilibrium System.

Proof : Follows directly from Lemma 4 and Proposition 4.

Efficiency may not be the only desirable feature for these systems and
in what follows, we explore possible avenues of interest, such as the kind of
topology that is needed to create a community where performance of favors
is expected.

4.3 Favor Efficiency

The notion of efficiency we used so far corresponded to the standard utili-
tarian notion of maximizing the sum of expected utilities across agents. An
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alternative definition of efficiency may be provided based on the probability
with which an efficient favor gets performed and an inefficient favor does not
get performed. A favor is said to be efficient if v ≥ c∗. Similarly, we refer to
an inefficient favor as one that is performed when v < c∗.

Denote cNi
the random variable min{cj}j∈Ni

. We refer to δ(g, c∗; v) [resp.
ε(g, c∗; v)] as the probability that an Efficient [resp. Inefficient] Favor gets
performed in a system (g, c∗; v). Likewise, we define δi [resp. εi] as the
probability of an efficient [resp. inefficient] favor getting performed for agent
i. It follows that:

δ =
1

N

N∑
i=1

δi and ε =
1

N

N∑
i=1

εi

where

δi = Pr(Efficient Favor) · Pr(The favor gets performed|Efficient Favor)

i.e.,
δi = Pr(cNi

≤ v) · Pr(cNi
≤ c∗|cNi

≤ v),

i.e.,
δi = Pr(cNi

≤ min{c∗, v}),

and

εi = Pr(cNi
∈ (v, c∗]).

A measure of favor efficiency may then be defined as a functionW (δ(g, c∗; v), ε(g, c∗
′
; v))

such that W1 > 0 and W2 < 0. For example, W = δ(1− ε).

Definition 8 (Favor Efficient Convention) Given a network g and value
v, a convention c∗ is said to be Favor Efficient if for all c∗

′

W (δ(g, c∗; v), ε(g, c∗; v)) ≥ W (δ(g, c∗
′
; v), ε(g, c∗

′
; v))

Proposition 6 Given a network g and value v, a convention c∗ is favor
efficient if and only if c∗ = v.

Proof: Compared to any convention c∗ < v, an alternative convention c∗
′ ∈

(c∗, v) yields an equivalent similar ε but a bigger δ, so c∗ could not have been
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efficient. Likewise, for any c∗ > v, picking an alternative c∗
′ ∈ (v, c∗) yields

a lower ε but an equivalent δ. 2

We can suitably modify the definition to consider restricted favor efficient
convention by requiring that c∗ must maximize the value of W over a given
set of conventions C, say set of RPS conventions.

Definition 9 (Favor Efficient Network) For a given convention c∗ and
value v, a network g is said to be Favor Efficient if for all g′

W (δ(g, c∗; v), ε(g, c∗; v)) ≥ W (δ(g′, c∗; v), ε(g′, c∗; v)).

Proposition 7 For any 0 < c∗ ≤ v, network g is Favor Efficient if and only
if it is the complete network gN−1.

Proof: See Appendix.

5 Discussion and Conclusion

In this paper we developed a model to study co-evolution of favor exchange
norm and the network structure of favor exchange. We incorporated two
features of real world into our model: First, the cost of providing favors
is stochastic. Second, similar societies can adopt different conventions as
to when it is acceptable for an agent to not perform a favor asked by an-
other. We characterized the set of restricted stable networks and studies how
they vary with the underlying favor-exchange convention. We provided the
micro-foundations for the network formation process by describing the Nash
equilibria if a link deletion game, which we showed were identical to the set
of restricted stable networks. Our analysis suggested that the most efficient
stable network are regular and the their degree is lower (higher) if the favor
exchange convention is more (less) demanding.

We are interested in understanding what community characteristics, in
terms of its network structure g, are conducive to having a more or less
demanding favor exchange norm. Similarly, given an existing convention c∗,
we would like to understand the network structures that are sustainable. We
do not take a position as to the primacy of g over c∗, or vice versa; indeed
either one may be treated as a primal, depending on the specific application.

15



The structure of our model gives rise to positive externalities from links,
similar to the models by Jackson and Wolinsky [4], Johnson and Giles [7],
Calvó-Armengol [1] and Jackson and Rogers [6]. However, unlike information
transmission models, our externality comes form a different source: it comes
from the fact that an agent having more friends reduces her dependence on
the existing set of friends for favors. This leads to a structure were a person
with many existing friends is an attractive friend to have. At the same
time, such a person will not be interested in adding/keeping friends unless
they themselves have many friends. Thus, there is a propensity for positive
assortative matching—something we would like to explore further in future
work.

Our analysis is related to, but differs from, the work by Jackson et al [5]
in important ways. One particular source of difference in our conclusions is
the nature of punishment following violation of a convention. In their paper,
the punishment is carried out by a subset of neighbors that are common be-
tween the supposed-to-be giver and receiver of favors. This leads the stability
condition giving rise to a high-support structure. In our model, on the other
hand, the punishment comes from the neighbors of the violator of the con-
vention. This assumption is more suitable for studying “global norms,” i.e.
norms pervading in the entire community, as opposed to the “local norms,”
which Jackson et al capture. Given that our punishment strategy is stronger
than theirs, our results about the efficient network not being stable are also
stronger, and will carry over to a set-up with local enforcement of norms.

Our paper also contributes to the relationship between pairwise stabil-
ity and Nash equilibria studied by Calvó-Armengol and Ilkilic [2]. In our
framework, with link deletion as the set of permissible strategies, there is an
equivalence between the two concepts. However, it can be shown that this
does not generalize to addition of links because of super-modularity—while
it may benefit a player to add several links, each link may not, by itself, be
worth adding.

Finally, our model provides a one-shot, simultaneous move characteriza-
tion of the network formation game. In future work, we aim at studying the
evolutionary stability of the network structure by starting with the initial
network and presenting agents at random with link-deletion opportunities.
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6 Appendix

Proof Claim 1:
The expected gain of agent i from being in a network g is

P (i needs a favor) ·P
(

min
k∈Ni

ck ≤ c∗
)
· v. (6)

Firstly, recall that P (i needs a favor) = 1/N. Secondly, let f (ck) and F (ck)
be the probability density function (pdf) and cumulative distribution func-
tion (cdf) of a random variable ck, respectively. Then the cdf of the random
variable

min
k∈Ni

ck,

is known to be
1− [1− F (s)]di . (7)

Hence, expected gain (6) can be written as

v

N
·
(

1− [1− F (s)]di
)
. (8)

Because agent i performs the favor whenever she is the lowest cost person
in j’s neighbors and her cost is below c∗, the expected cost to agent i when
j ∈ Ni needs a favor is

P (j needs a favor)·P
(
ci ≤ c∗ and ci ≤ min

k∈Ni

ck

)
·E
(
ci

∣∣∣∣ci ≤ c∗ and ci ≤ min
k∈Ni

ck

)
.

Again, P (j needs a favor) = 1/N. Next, notice that

P

(
ci ≤ c∗ and ci ≤ min

k∈Ni

ck

)
= P

(
ci ≤ min

k∈Ni

ck

)
·P
(
ci ≤ c∗

∣∣∣∣ci ≤ min
k∈Ni

ck

)
=

1

dj
·
(

1− [1− F (c∗)]dj
)

due to (7). And it can be shown that

E

(
ci

∣∣∣∣ci ≤ c∗ and ci ≤ min
k∈Ni

ck

)
= dj

∫ c∗

−∞

s · f (s) · [1− F (s)]dj−1

1− [1− F (c∗)]dj
ds.
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Therefore, the expected cost of agent i being in a network g with neighbor-
hood Ni is

1

N
· 1

dj
·
(

1− [1− F (c∗)]dj
)∑

j∈Ni

{
dj

∫ c∗

−∞

s · f (s) · [1− F (s)]dj−1

1− [1− F (c∗)]dj
ds

}
or

1

N

∑
j∈Ni

∫ c∗

−∞
s · f (s) · [1− F (s)]dj−1 ds. (9)

Combining (8) and (9), the expected utility (benefits minus costs) of agent i
being in a network g with neighborhood Ni is

EU i (g, c∗, v) =
v

N
·
(

1− [1− F (s)]di
)
− 1

N

∑
j∈Ni

∫ c∗

−∞
s·f (s)·[1− F (s)]dj−1 ds,

which can be normalized to

EU i (g, c∗, v) = v ·
(

1− [1− F (s)]di
)
−
∑
j∈Ni

∫ c∗

−∞
s · f (s) · [1− F (s)]dj−1 ds.

(10)
Recall that ck is assumed to have a uniform distribution on the unit interval,
[0, 1] . Hence, Equation 10 can be written as:

EU i (g, c∗, v) =v
[
1− (1− c∗)di

]
−
∑
j∈Ni

1

dj

[
1

dj + 1
− c∗ (1− c∗)dj − 1

dj + 1
(1− c∗)dj+1

]
.

Proof Lemma 1:

If agent j ∈ Ni(g) has dj neighbors rather than dj − 1, the benefit to
agent i does not change, but the cost bear by agent i from having agent j as
a neighbor does.
If agent i is better off when his neighbor j has dj neighbors, it has to be that,
from Equation 9:

∫ c∗

−∞
s · f(s) · [1− F (s)]dj−1ds ≥

∫ c∗

−∞
s · f(s) · [1− F (s)]djds
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which is obviously the case. 2

Proof Lemma 2:

Rearrange Equation 4 into:

2v
[
1− (1− c∗)k

]
> k (c∗)2 (11)

and let f (c∗) = 2v
[
1− (1− c∗)k

]
and g (c∗) = k (c∗)2 . To show (4), it

is enough to show that there exist such c∗ satisfying equation (11). It is
obvious that f (0) = g (0) = 0, f (1) = 2v, and g (1) = k. Since f ′ (c∗) =
2vk (1− c∗)k−1 and g′ (c∗) = 2kc∗, f ′ (0) = 2vk > g′ (0) = 0 for any v > 0.
Furthermore, f ′′ (c∗) = −2vk (k − 1) (1− c∗)k−2 ≤ 0 and g′′ (c∗) = 2k > 0
for all c∗ ∈ (0, 1] . Therefore if 2v > k, equation (11) holds for all c∗ ∈ (0, 1].
When 2v ≤ k, f (c∗) and g (c∗) intersect at a point c̃ such that 0 < c̃ ≤ 1 and
equation (11) is true for all c∗ ∈ (0, c̃).2

Proof Theorem 1

We first decompose the network into N subnetworks that are star net-
works. Each star subnetwork admits one of the agents as the star, and the
neighbors of this agent as the satellites of the star. From Lemma 2, we know
that for each subnetwork gSi,di

, there exists a convention, call it c∗Si,di
, for

which the star agent receives a strictly positive expected utility. This conven-

tion is not unique, and we denote c∗Si,di
= sup

{
c∗Si,di

}
. Any convention c∗Si,di

in the interval (0, c∗Si,di
) supports (gSi,di

, c∗Si,di
; v) as Participation Compatible

(Lemma 2). Following Lemma 1, we know that, since EU i(gSi,di
, c∗Si,di

; v) > 0,

then EU i(g, c∗Si,di
; v) is also strictly positive (where g is the original network

with N agents) since dj(g) ≥ dj(Si,di) for all j ∈ Ni(g).
The intersection of the N intervals (0, c∗Si,di

) for all i ∈ N is the set con-

ventions that are participation compatible for all agents. Alternatively, by
taking the minimum of all c∗Si,di

that have been identified for all the star sub-

networks, we can find this intersection. Formally, denote c∗P = mini∈N c
∗
Si,di

.

Agents can always adopt a convention c∗p ∈ (0, c∗P ) which makes the system
Participation Compatible. 2

Proof Theorem 2:
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Consider agent i in network g. If agent i has no incentives to delete a
link, then it has to be that for any j ∈ Ni(g), the following inequality holds.

EU i(g, c∗i ; v) ≥ EU i(g \ {i, j} , c∗i ; v)

= vc∗i (1− c∗i )
di−1 − 1

dj

[
1

dj + 1
− c∗ (1− c∗i )

dj − 1

dj + 1
(1− c∗i )

dj+1

]
≥ 0.

Let
f (c∗i ) = vc∗i (1− c∗i )

di−1

and

g (c∗i ) =
1

dj

[
1

dj + 1
− c∗i (1− c∗i )

dj − 1

dj + 1
(1− c∗i )

dj+1

]
.

Then f (0) = g (0) = f (1) = 0 and g (1) = 1
dj(dj+1)

.

Because

f ′ (c∗i ) = −div (1− c∗i )
di−2

(
c∗i −

1

di

)
and

g′ (c∗i ) = c∗i (1− c∗i )
dj−1 ,

f ′ (0) = v > g′ (0) = 0 for all v > 0.

Moreover, f (c∗i ) is maximized at c∗i = 1/di and g′ (c∗i ) > 0 for all c∗i ∈ (0, 1) .
Hence f (c∗i ) and g (c∗i ) intersect at c̃∗ij such that 0 < c̃∗ij < 1. Condition

EU i(g, c∗i ; v) ≥ EU i(g \ {i, j} , c∗i ; v) is satisfied for all c∗i ∈
[
0, c̃∗ij

]
.

We can find c̃∗ij for all j ∈ Ni in this way. If we define c̃∗i = minj∈Ni

{
c̃∗ij
}
,

the RPS condition is satisfied for all j when c∗i ∈ [0, c̃∗i ] . Using the same
procedure, we can find c̃∗i for all i ∈ N . Let c∗RPS = mini∈N {c̃∗i } then a
system (g, c∗; v) is RPS for any c∗ ∈ [0, c∗RPS] .2

Proof Proposition 1:
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If (g, c∗; v) is Restricted Pairwise Stable, we have a convention c∗ ∈
[0, c∗RPS] such that, for any agent i ∈ N :

vc∗(1− c∗)di − 1

dj

[
1

dj + 1
− c∗(1− c∗)dj − 1

dj + 1
(1− c∗)dj+1

]
≥ 0

Since this condition must be true for all j ∈ Ni we can simply add up all di
of the conditions such that∑
j∈Ni

{
vc∗(1− c∗)di − 1

dj

[
1

dj + 1
− c∗(1− c∗)dj − 1

dj + 1
(1− c∗)dj+1

]}
≥ 0

which then becomes

divc
∗(1− c∗)di ≥

∑
j∈Ni

1

dj

[
1

dj + 1
− c∗(1− c∗)dj − 1

dj + 1
(1− c∗)dj+1

]
. (12)

To prove that the system is also Participation Compatible, it suffices to show
that for all di and c∗ ∈ [0, c∗RPS], the following inequality holds:

v[1− (1− c∗)di ] > divc
∗(1− c∗)di . (13)

because of equation 3. Equation 13 can be rewritten as:

1 > (dic
∗ + 1)(1− c∗)di .

Note that we only need to consider c∗ ∈ (0, c∗RPS] since the system is Re-
stricted Pairwise Stable and Participation Compatibility only requires c∗ to
be in the interval (0, 1].
To verify this, let

f (c∗) =
1

(1− c∗)di
and g (c∗) = dic

∗ + 1.

Note that f (0) = g (0) = 1, f (1) =∞, and g (1) = 1 + di. Since

f ′ (c∗) =
di

(1− c∗)di+1
and g′ (c∗) = di

f ′ (c∗) > g′ (c∗) for all c∗ ∈ (0, c∗RPS] . Getting second derivatives of f and g

f ′′ (c∗) =
di (di + 1)

(1− c∗)di+2
and g′′ (c∗) = 0.
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Therefore f
′′

(c∗RPS) > g′′ (c∗) for all c∗ ∈ (0, c∗RPS] , equation 13 is true.
2

Proof Theorem 3:

Consider a given set of values {g, c∗, v}. Suppose that under network g,
agent i has neighbors {1, 2, ..., di}. Take an arbitrary subset k of size K(≤ di)
of these neighbors. Denote EU i(g) agent i’s expected utility under network
g (at the fixed c∗ and v) and let EU i(g \ k) denote the expected utility from
the subnetwork in which agent i has dropped k from her set of neighbors.
We claim that if EU i(g \ k) ≥ EU i(g) then there exists j ∈ k such that
EU i(g \ {i, j}) ≥ EU i(g).
This claim asserts that if agent i is better off by dropping a subset k of her
neighbors, then she is also better of dropping some neighbor j ∈ k.
Let dj denote the number of j’s neighbor for j ∈ k. Without any loss of gen-
erality we can relabel i’s neighbors such that the agents in k are {1, 2, ..., K}
where d1 ≤ d2 ≤ ... ≤ dK . The remaining di −K neighbors can take names
K + 1, ..., di in any arbitrary order. Note that EU i(g) can be written as
B(g)−

∑di
j=1Cj where B(g) denotes the expected benefit to i from having di

friends and Cj denotes the expected cost to i of having j as a friend. Note
that the term B(g) depends only on the number of i’s friends (i.e. on di only)
while each Cj depends on the number of friends of each friend, i.e. on the
djs. Under our convention, we have C1 ≥ C2 ≥ ... ≥ CK since the expected
cost of having someone as friend is inversely related to the number of their
friends. Looking at the benefits term, observe that

B(g) = v[1− (1− c∗)di ]

is an increasing and strictly concave function in di which means that if we
start reducing the number of agent i’s friends from di to di − K, B(.) will
decrease faster and faster with each deletion of a friend. In particular we
have

B(g)−B(g \ k) > K · [B(g)−B(g \ {i, 1})]. (14)

Suppose that
EU i(g \ k) ≥ EU i(g)

i.e.

B(g \ k)−
di∑

j=K+1

Cj ≥ B(g)−
di∑
j=1

Cj
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i.e.
K∑
j=1

Cj ≥ B(g)−B(g \ k).

This implies, given (14), that

K∑
j=1

Cj > K · [B(g) \B(g \ {i, 1})]

or
1

K

K∑
j=1

Cj > B(g)−B(g \ {i, 1}).

Since C1 = max{C1, ..., CK} it follows that

C1 > B(g)−B(g \ {i, 1}).

That is, if starting from network g, dropping some subset of k neighbors
is a profitable deviation for i, then dropping the least desirable of these k
neighbors is also a profitable deviation.2

Proof Proposition 2:

We need to find c∗ that maximize the sum of expected utilities

f (c∗) =
N∑
i=1

EU i (g, c∗; v) . (15)

The first order condition is

f ′ (c∗) =
n∑

i=1

[
div (1− c∗)di−1 −

∑
j∈Ni

c∗ (1− c∗)dj−1
]

= 0. (16)

The term c∗ (1− c∗)dk−1, k = 1, · · · , N appears dk times in equation (16).
Grouping those terms together for every agent yields

f ′ (c∗) =
n∑

i=1

[
di (v − c∗) (1− c∗)di−1

]
= 0. (17)
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From equation 17, it is clear that c∗ = 1 and v are the only roots in [0, 1]
when v ∈ [0, 1] .
The second order condition is

f ′′ (c∗) = di

N∑
i=1

[
(dic

∗ + v − div − 1) (1− c∗)di−2
]
,

which is at c∗ = v,

−di
N∑
i=1

(1− v)di−1 < 0.

Thus equation (15) is maximized at c∗ = v when v ∈ (0, 1) . However, if
v ≥ 1, the sum of expected utilities is maximized at c∗ = 1 since f ′ (c∗) ≥ 0
on [0, 1] . 2

Proof Proposition 3:

Let gSi,N−1
be the star network where i is the agent at the centre of the

star and N − 1 is the number of satellite agents. For the agent at the centre,
the Restricted Pairwise Stability condition, derived from equation 4, reduces
to

2v2(1− v)N−2 + 2v(1− v) + (1− v)2 ≥ 1

(1− v)N−2 ≥ 1

2

v ≤ 1− (
1

2
)

1
N−2 .

Since limN→∞ 1− (1
2
)

1
N−2 = 0 and limN=2 1− (1

2
)

1
N−2 = 1, the next step is to

show that no satellite agent has any incentives to delete links for any value
of v ∈ (0, 1).
The Restricted Pairwise Stability condition for satellites, when c∗ = v is:

(N − 1)v2 ≥ 1

N
− v(1− v)N−1 − 1

N
(1− v)N

which can be rewritten as
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N(N − 1)v2 +Nv(1− v)N−1 + (1− v)N ≥ 1.

Let f(v) = N(N − 1)v2 +Nv(1− v)N−1 + (1− v)N . For any N ≥ 2, we have
limv→0 f(v)→= 1 and limv→1 f(v)→= N(N − 1). The next step is then to
show that f(v) is increasing on (0, 1). This amounts to show that:

2vN(N − 1) + (−1)N(1− v)N−1 +N(1− v)N−1 −Nv(1− v)N−2 > 0.

Rearranging, the condition becomes

2(N − 1) > (1− v)N−2

which is always satisfied for N ≥ 2. Hence, the Restricted Pairwise Stability
condition for the centre of the star is both, necessary and sufficient, to insure
that the system is Restricted Pairwise Stable.2

Proof Proposition 4:

For regular networks, the Restricted Pairwise Stability condition for any
agent at c∗ = v can be rewritten as:

n2v2 + (n− 1)v + 1 ≥ (1− v)1−n.

Define

f (v) = n2v2 + (n− 1) v + 1 and g (v) =
1

(1− v)n−1
.

Note that f (0) = g (0) = 1, f (1) = n (n+ 1) , and g (1) =∞. Furthermore,
f ′ (v) = 2n2v + n − 1 > 0 and g′ (v) = (n− 1) (1− v)−n > 0 for all n ≥ 2
and v ∈ (0, 1) . Because f ′′ (v) = 2n2 and g′′ (v) = n (n− 1) (1− v)−n−1 ,

f ′′ (v) ≥ g′′ (v) for all v ∈ (0, 1− [(n− 1) /2n]1/n+1].2

Proof Lemma 4:

Traditional Social Welfare, SW (g, c∗; v) can be defined as:

SW (g, c∗; v) =
∑
i∈N

{
Pr(i needs a favor) · Pr(i receives a favor)

· (v − Exp. Social Cost of doing a favor for i)
}
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Given Ni, the set of i’s neighbors, let cNi
, denote the random variable

minj∈Ni
{cj}. The cdf and pdf of cNi

are denoted by Fi and fi, respectively.
We can then write:

SW (g, c∗; v) =
N∑
i=1

1

N
· Fi(c

∗) · [v − E(cNi
|cNi
≤ c∗)]

=
1

N

N∑
i=1

Fi(c
∗) ·
[
v −

∫ c∗

0

cfi(c)dc
]

Note that when c∗ ≤ v, we have [v − E(cNi
|cNi
≤ c∗)] ≥ 0.

Now consider a move from g to g′ by increasing the size of agent i’s neigh-
borhood, i.e., N ′i ⊃ Ni. Then, we have:

F ′k(c∗) ≥ F (c∗) and E(cN ′k
|cN ′k) ≤ c∗)] ≤ E(cNk

|cNk
≤ c∗)],

for all agents k ∈
{{
N ′i \ Ni

}
∪ {i}

}
.

For any other agent j /∈
{{
N ′i \ Ni

}
∪ {i}

}
, dj(g) = dj(g

′). It follows that
SW (g′, c∗; v) ≥ SW (g, c∗; v), i.e., increasing an agent’s neighborhood size
increases social welfare. Since this is true for any arbitrary agent and any
arbitrary starting point, the complete network maximizes social welfare so
long as c∗ ≤ v.2

Proof Proposition 7:

It suffices to show that when c∗ ≤ v, adding (deleting) a link improves
(reduces) favor efficiency. Also, since c∗ ≤ v implies εi = 0 for all i, maximiz-
ing W is the same as maximizing δ. Let g′ = g∪{i, j}. Note that for k 6= i, j
we have dk(g′) = dk(g) and therefore Pr(cNk(g′) ≤ c∗) = Pr(cNk(g) ≤ c∗), i.e.,
δ′k = δk.
At the same time, for i (and similarly for j) we have Pr(cNi(g′) ≤ c∗) >
Pr(cNi(g) ≤ c∗), i.e., δ′i > δi since the minimum of i.i.d. draws over a greater
number of draws have a greater probability of being smaller than any given
threshold.
Hence, we have:

δ =
1

N
{
∑
k 6=i,j

δk + δi + δj}
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and

δ′ =
1

N
{
∑
k 6=i,j

δ′k + δ′i + δ′j}.

And as argued above, δ′k = δk for k 6= i, j, δ′i > δi and δ′j > δj. 2
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