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Abstract 

While winegrowers usually want to achieve consistent yield targets, there is a high degree of 

yield and price (and hence gross revenue) variability in winegrape production. The aim of this 

study is to determine whether there are differences in yield and revenue variability across 

climates, varieties, and regions in Australia. To do so, we estimate statistical models of the 

impact of those three variables on the coefficient of variation of yield and gross revenue per 

hectare. The results suggest that hotter and drier regions exhibit lower inter-annual yield 

variability, something that may be largely explained in the past by the use of irrigation but 

which may change in the future with climate change and higher water prices. The results also 

show that there are sometimes differences in yield and revenue variability not only across 

regions but also between varieties.  

Keywords: grape yield, grape revenue, coefficient of variation, viticulture, climate change, 

alternate bearing  

Introduction 

Winegrowers appreciate low year-to-year variations in grape yields. Yield variations are 

sometimes caused by extreme events such as droughts (Zamorano et al., 2021) or high 

unexpected pest pressures (Puga et al., 2021). However, yield variability is mostly influenced 

by vine management and weather differences across seasons (Ellis et al., 2020). Growers often 

change their vineyard management strategies to achieve more-consistent yields and thereby 

more-consistent revenues. Yet further research is needed to better understand winegrape yield 

variability and to develop techniques for stabilising yields (Clingeleffer, 2010). This 

knowledge is increasingly important because obtaining consistent yields is becoming more 

difficult with climate change (Merot et al., 2022).   

The aim of this study is to determine whether there are differences in yield and revenue 

variability across climates, varieties, and regions in Australia. We compute coefficients of 

variation (CoV) for different variety-by-region combinations over the 2001-22 period. We then 
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regress these CoV on different variables. In doing so, we provide insights into overall yield and 

revenue variability throughout those years. While we discuss some of the possible reasons 

explaining yield and revenue variability, this study does not intend to provide a causal link 

between the variables used in our models and yield or revenue variability. Nor does it seek to 

identify the variables influencing yield in a given season, for which process-based models (e.g., 

Leolini et al. (2022)) or panel data models (e.g., Puga et al. (2023)) may be more suitable. 

Materials and methods 

Data 

We use a new dataset developed by Anderson and Puga (2023) that provides time series on 

area, production, and price by variety and region, as well as many other variables and indexes. 

We use these data to calculate CoV of yield (i.e., production per hectare) and gross revenue per 

hectare (revenue, hereafter).1 The CoV is calculated as the ratio of the standard deviation to the 

mean. It is therefore a meaningful indicator for comparing the degree of variation between 

varieties, regions, or variety-by-region combinations even though the means are very different. 

For calculating the CoV, we use data from 2001 to 2022, after dropping the data for unidentified 

varieties. Table 1 shows the CoV for the regions and varieties with the largest shares of area. 

[Location for Table 1] 

We also use data on growing season average temperature (GST) and growing season 

precipitation (GST) from Anderson and Puga (2023). GST is one of the most-used climate 

indexes to represent temperature in viticulture (Liles and Verdon‐Kidd, 2020, Puga et al., 

2022a), and GSP is another commonly used index that has a high correlation with other 

precipitation-related variables (Puga et al., 2022b).  

Statistical models 

With the main objective of uncovering the extent to which yield variability differs across 

regions with different GST and GSP, we estimated: 

𝑙𝑛_𝐶𝑜𝑉_𝑌𝑖𝑒𝑙𝑑𝑣,𝑟 = 𝛼 + 𝛽1𝐺𝑆𝑇𝑟 + 𝛽2𝐺𝑆𝑃𝑟 + 𝜑𝑣 + 𝜃𝑙𝑛_𝑎𝑟𝑒𝑎𝑣,𝑟 + 𝜀𝑣,𝑟. (1) 

The dependent variable is the natural logarithm of the coefficient of variation of yield of variety 

𝑣 in region 𝑟, across all the years for which there are data available for that variety in that 

region. The main variables of interest in this model are the regional GST and GSP, of which 

𝛽1 and  𝛽2 are their respective coefficients. The natural logarithm of the average area of variety 

𝑣 in region 𝑟 across the time period (𝑙𝑛_𝑎𝑟𝑒𝑎𝑣,𝑟) serves as a control variable, and 𝜃 is its 

                                                 
1 While variability in costs of production also are highly relevant, cost data by region and variety are unavailable 

to match the comprehensive yield and gross revenue data available. 
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coefficient. The model also includes variety dummy variables (𝜑𝑣) that control for differences 

in the CoV across varieties. The term 𝛼 is a constant and 𝜀𝑣,𝑟 is the error term. 

With the same objective but for analysing revenue variability, we estimated: 

𝑙𝑛_𝐶𝑜𝑉_ 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 ℎ𝑎⁄
𝑣,𝑟 = 𝛼 + 𝛽1𝐺𝑆𝑇𝑟 + 𝛽2𝐺𝑆𝑃𝑟 +𝜑𝑣 + 𝜃𝑙𝑛_𝑎𝑟𝑒𝑎𝑣,𝑟 + 𝜀𝑣,𝑟. (2) 

The right-hand side of this model is the same as that in model (1). The difference is the 

dependent variable, which in this case is the natural logarithm of the coefficient of variation of 

revenue per ha of variety 𝑣 in region 𝑟, also across all the years for which there are data 

available for that variety in that region. 

In addition to model (1), we estimated another model in which the dependent variable 

is again the natural logarithm of the coefficient of variation of yield: 

𝑙𝑛_𝐶𝑜𝑉_𝑌𝑖𝑒𝑙𝑑𝑣,𝑟 = 𝛼 + 𝜑𝑣 + 𝛾𝑟 + 𝜃𝑙𝑛_𝑎𝑟𝑒𝑎𝑣,𝑟 + 𝜀𝑣,𝑟. (3) 

The difference between this model and model (1) is that this model includes region dummy 

variables (𝛾𝑟) instead of GST and GSP. These region dummies aim to capture all time-invariant 

observable and unobservable characteristics of each region, including their climate. Therefore, 

by indirectly controlling for more region-specific characteristics, the coefficients of the variety 

dummies are more reliable than those of model (1). At the same time, the region dummies in 

this model also provide information on differences in yield variability across regions. 

We also estimated a similar model to (3) but for analysing revenue variability, where 

the right-hand side is the same as in model (3) but the left-hand side (the dependent variable) 

is the same as in model (2): 

𝑙𝑛_𝐶𝑜𝑉_ 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 ℎ𝑎⁄
𝑣,𝑟 = 𝛼 + 𝜑𝑣 + 𝛾𝑟 + 𝜃𝑙𝑛_𝑎𝑟𝑒𝑎𝑣,𝑟 + 𝜀𝑣,𝑟. (4) 

There is a double justification for the use of the natural logarithm of CoV as opposed 

to CoV in models (1) to (4). Firstly, this specification leads to a more straightforward 

interpretation of the coefficients: it is easier to analyse proportional changes in the CoV than 

changes in the CoV themselves. Secondly, using the natural logarithm of the dependent 

variable can help mitigate issues of heteroskedasticity and deal with outlying or extreme values 

by narrowing the range of the variable (Wooldridge et al., 2020). 

The CoV of both yield and revenue per ha is expected to be smaller for those variety-

by-region combinations with larger areas. That is the reason behind the inclusion of 𝑙𝑛_𝑎𝑟𝑒𝑎𝑣,𝑟 

as a control variable in models (1) to (4). Since this control variable and the dependent variable 

in each model are in natural logarithms, the 𝜃 coefficients are easy-to-interpret elasticities. 

These specifications seem accurate based on a visual analysis of the plots in Figure 1. These 

relationships are less smooth and evident when graphing each CoV against the area, as opposed 

to their natural logarithms. 
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[Location for Figure 1] 

Models (1) to (4) could be straightforwardly estimated using standard ordinary least 

squares (OLS) commands if 𝜀𝑣,𝑟~(𝑁, 𝜎
2). However, each observation does not represent a 

hectare, but rather an average over a number of hectares for each variety in a given region. As 

such, we assumed that 𝜀𝑣,𝑟~(𝑁, 𝜎
2/𝜔𝑣,𝑟), where the 𝜔𝑣,𝑟 are analytic weights. We set the 

analytic weights to be the average area across the time period for each variety-by-region 

combination. 

In addition to estimating these models using analytical weights, we used the sandwich 

estimator of variance for obtaining robust standard errors for models (3) and (4). For models 

(1) and (2), since GST and GSP are region-specific variables, we specified standard errors that 

allow for intra-group correlation using the clustered sandwich estimator so that these standard 

errors are clustered at the regional level. 

Results 

Table 2 shows the estimation results of models (1) and (2). Model (1) fits the data quite well, 

explaining 60% of the variation in the natural logarithm of the CoV of yield. By contrast, model 

(2) explains only half as much (i.e., 30%) of the variation in its dependent variable compared 

with model (1). As expected, the coefficients of the natural logarithm of area in both models 

are negative and highly statistically significant, consistent with what is observed in Figure 1.  

[Location for Table 2] 

The coefficients of GST and GSP in model (1) are statistically significant at the 1% 

level. The interpretation of the GST coefficient is that a 1C higher GST is associated with a 

9.1% lower CoV of yield. (This is calculated as (EXP(coefficient)-1)*100.) The interpretation 

of the GSP coefficient is that a 10mm higher GSP is associated with a 1% increase in the CoV 

of yield. While the coefficients of GST and GSP in model (2) have the same signs as those in 

model (1), they are not statistically significant. 

Table 3 shows the results of models (3) and (4). The coefficients and standard errors of 

the natural logarithm of area in both models are similar to those obtained in models (1) and (2), 

but the coefficients of determination (R2) are higher than for models (1) and (2). Specifically, 

models (3) and (4) explain, respectively, 80% and 59% of the variation in the dependent 

variable. These higher coefficients of determination are expected because models (3) and (4) 

incorporate region dummy variables that aim to control for all time-invariant observable and 

unobservable characteristics of each region, including both GST and GSP. 

[Location for Table 3] 

Since models (3) and (4) control for all these region-specific characteristics, they 

provide more reliable estimates of the variety dummy variables than models (1) and (2). Those 
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variety dummies, which are not reported in Table 2 to save space, are shown in Table 3. 

Importantly, the coefficient and statistical significance of each variety dummy are with respect 

to the base variety, which is Syrah in both models.  

In addition to setting the base variety as Syrah, we re-estimated models (3) and (4) with 

the base variety being the next five most-planted varieties: Cabernet Sauvignon, Chardonnay, 

Merlot, Sauvignon Blanc, and Pinot Noir. We then used those regression results to estimate the 

expected percentage difference in the CoV of a variety when compared to the six most-planted 

varieties. Table 4 shows the estimates for the CoV of yield for the 27 most-planted varieties, 

and Table 5 provides the same information for the CoV of revenue per ha. Overall, these results 

suggest differences across some varieties in their CoV. 

[Location for Tables 4 and 5] 

Besides showing variety dummy variables, Table 3 reports the region dummies for 

models (3) and (4). Barossa Valley is set to be the base region for both models, so the 

coefficient and statistical significance of each region dummy are with respect to this region. 

We used those estimates to compute the expected difference in the coefficients of variation of 

yield and revenue per ha of a region compared to Barossa Valley. Table 6 shows these expected 

differences for the 28 largest regions. 

[Location for Table 6] 

Discussion 

The estimation results of models (1) and (2), shown in Table 2, provide insights into how 

regions with different climates differ in terms of yield and revenue variability. Hotter regions 

seem to exhibit less yield variation, the same as drier regions. There are a few possible 

explanations for these differences in yield variability. Hotter regions are less prone to frosts, 

which often have negative impacts in the cooler regions of Australia (Puga et al., 2023). Drier 

regions may be less susceptible to the major grape diseases, which are enhanced by higher 

precipitation (Agosta et al., 2012). 

That said, the main reason explaining these differences in yield variability may be 

related to the production systems of the regions. Most regions that are hot and dry are irrigated 

regions, meaning that growers in these regions can often reach their targeted yields by irrigating 

more or less. However, in drought years even the irrigated regions can have lower yields, 

because grower allocations of water tend to be shrunk and water prices spike in those years. 

With climate change, droughts are projected to become more prevalent in the future (Remenyi 

et al., 2020), meaning those regions may have higher yield variability due to lower yields in 

drought years.  
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The results do not suggest regions with a certain climate type exhibit more or less 

revenue variation. This is in line with the coefficient of determination (R2) of model (2) being 

half of that in model (1). This may be because, while hotter and drier regions may have lower 

yield variability, that may offset by higher price variability. Indeed, a similar model to (1) and 

(2) but with the natural logarithm of price as a dependent variable suggests that the hotter and 

drier regions do indeed exhibit more price variation (results available from the authors). 

Winegrape varieties also differ in how much their yields vary throughout time. These 

differences across varieties are often both statistically and agronomically/economically 

significant when compared to the six most-planted varieties (see Table 4). Varieties such as 

Fiano, Muscat Blanc à Petits Grains, Petit Verdot, Pinot Gris, Syrah and Tempranillo seem to 

exhibit higher yield variability. Others, such as Colombard, Gewürztraminer, Riesling, 

Sauvignon Blanc and Verdelho seem to have more variable yields across years. Overall, there 

does not seem to be a clear pattern based on the colour of the varieties, which is evidenced by 

further analysis that suggests there is no statistically significant difference between red and 

white varieties (results available from the authors). This finding might differ from research 

findings by Fernandez-Mena et al. (2023) that suggest white winegrape varieties show larger 

differences between actual and targeted yields (although that study is not directly comparable 

with the present one). 

Likewise, varieties often differ in their revenue variability. These sometimes 

statistically and economically significant differences are evident when comparing varieties (see 

Table 5). Chardonnay, Tempranillo and Viognier seem to have more variable revenues across 

the years. Meanwhile, Colombard, Garnacha Tinta, Gewürztraminer, Merlot, Muscat of 

Alexandria, Pinot Noir, Riesling and Verdelho seem to exhibit higher revenue variation.  

While these lists may seem a bit different to those for yield variability, the varieties that 

exhibit higher yield variation also exhibit higher revenue variation, and vice-versa. As is the 

case for yields, there does not seem to be a clear pattern based on the colour of the varieties, 

and further analysis suggests there is no statistically significant difference in revenue variation 

between red and white varieties (results available from the authors).  

Regions also differ in their degree of yield and revenue variation, and  their inter-

regional differences are often large (see Table 6). The regions with less yield variability are 

often hotter and drier and include the main three hot irrigated regions (i.e., Riverland, Riverina, 

and Murray Darling-Swan Hill). However, there are some exceptions, notably Tasmania. 

Regions exhibit levels of revenue variability that are in line with their yield variability, although 

not always. Riverland is the most extreme example of such a case, as this region has a low level 

of yield variability but a high level of revenue variability.  

Based on the price dynamics of winegrapes, in years with higher yields, the price would 

be lower due to a higher supply of winegrapes if demand remains constant (Puga et al., 2019). 

Therefore, we might expect regions to have higher differences in yield than revenue variability. 



7 

 

However, the differences between yield and revenue variability have similar magnitudes across 

varieties (see Table 1 and compare Table 4 with Table 5) and regions (see Table 1 and compare 

the second-last and last column of Table 6). 

There is a caveat, however, when interpreting the results for the CoV of revenue. It is 

that trends, when present, lead to higher CoV. We tested whether there are significant trends 

that may lead to higher CoV. While trends do not seem to be present for yields, they are present 

in prices sometimes, hence influencing revenues. This means that part of some high CoV in 

revenues may be explained by trends, either due to price increases or decreases during the 

period. 

What are the main reasons influencing yield variability? In many geographical 

indications of European countries, there are often limits on winegrape yields (Conca Messina 

et al., 2019). That is usually not the case in non-European countries like Australia, but growers 

sometimes get lower yields than what they could achieve due to quality reasons (Poni et al., 

2018). For example, 10% of Australia’s grape growers perform crop thinning, and in some 

regions that proportion is more than 50% (Nordestgaard, 2019). However, most of Australia’s 

grape production is not subject to crop thinning, and target yields are usually set at higher 

levels. Therefore, inter-annual variations in yield in Australia are mostly explained by weather 

events, including droughts, and by management practices (see Clingeleffer (2010) for a review 

of variables influencing yield variability).  

While there has been a substantial body of research related to yield variability, there 

are still some areas in which there is relatively little knowledge. An example of such an area 

relates to the degree to which alternate bearing affects winegrape production. Alternate bearing 

is a phenomenon in which a year with high yields is followed by a lower-yielding year, and 

vice versa. Since this phenomenon is induced by weather events, regional weather tends to 

synchronize alternate bearing in farms that are located within the same region, leading to 

(usually) biennial differences in yields (Samach and Smith, 2013). Alternate bearing is very 

evident in perennial crops such as apple, olive, mango, citrus, pistachio, litchi, dates and 

avocado (Sharma et al., 2019). Smith and Samach (2013) argue that grapes do not exhibit a 

great degree of alternate bearing due to canopy management and other strategies. That said, the 

degree to which alternate bearing manifests in grapes is still unknown: there is some evidence 

of this phenomenon in the case of table grapes in some Australian regions (see Dahal et al. 

(2019)), but it is less clear-cut in the case of winegrapes.   

Conclusion 

Hotter and drier regions exhibit lower inter-annual yield variability. Among other reasons, this 

may be explained by growers in these regions having more options to irrigate their vines. 

However, in the wake of climate change, and with high water prices in drier years, Australia’s 

wine regions may have higher yield variability in the future than in the period of our study. 
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Further, despite having less variable yields, growers in hotter and drier regions experience 

similar level of revenue variability to those in cooler and wetter regions, due to greater price 

variability.  

It is also evident from our analysis that there are differences in yield and revenue 

variability across varieties. Possible explanations relate to management practices and the 

impact of weather events, including droughts. However, more research is needed to better 

understand (and quantify the impact of) the mechanisms influencing yield variability, including 

differences across varieties. A better understanding is important considering that revenues 

seem to vary as much as yields, so this understanding may help growers stabilise both yields 

and revenues, for example, by helping them make better plant material choices when planting 

new vines. 
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Figure 1: Scatterplots showing each observation as a function of the natural 

logarithm of its coefficient of variation and the natural logarithm of its area. 

 

 

Table 1 
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Table 1: Yield, revenue per ha, and coefficients of variation (CoV) for the 

regions and varieties with a bearing area higher than 2,000 ha in 2022. 
 

Area 

(ha) 

Yield 

(t/ha) 

Revenue/ha  

(AUD) 

CoV 

yield 

CoV 

revenue/ha 

Region      
Riverland 19850 21.8 9154 0.61 0.79 

Riverina 17108 14.9 5695 0.68 0.85 

Barossa Valley 11445 6.2 7190 0.59 0.69 

Murray Darling - Swan Hill (Vic) 8722 19.1 9138 1.69 1.93 

McLaren Vale 7160 7.3 9944 1.26 1.37 

Murray Darling - Swan Hill (NSW) 6992 21.5 9476 1.14 1.14 

Langhorne Creek 5864 11.0 11500 1.44 1.84 

Margaret River 5592 4.9 7023 0.85 0.56 

Coonawarra 5479 7.6 7916 0.69 0.72 

Clare Valley 4973 4.6 5495 0.51 0.57 

Padthaway 3608 9.5 9820 0.62 0.71 

Adelaide Hills 3607 6.5 9385 0.78 0.81 

Limestone Coast - other 3273 8.3 7454 0.76 0.79 

Hunter Valley 2622 4.2 4336 1.12 0.79 

Wrattonbully 2617 11.3 11846 0.69 0.84 

Yarra Valley 2478 5.0 7887 0.76 0.50 

Great Southern 2415 3.9 5027 0.99 0.62 

Eden Valley 2195 5.1 7007 0.60 0.66 

Tasmania 2069 5.3 14198 0.78 0.49 

Variety      
Syrah/Shiraz 43280 6.1 6992 0.97 0.71 

Cabernet Sauvignon 26441 6.3 6696 1.44 1.24 

Chardonnay 21512 7.2 7666 0.92 0.71 

Merlot 8163 6.8 6978 1.06 0.78 

Sauvignon Blanc 6462 8.8 9705 1.19 0.98 

Pinot Noir 6029 7.0 8882 1.32 1.33 

Pinot Gris 4892 11.5 15016 3.60 2.90 

Sémillon 3800 9.4 7832 0.96 0.74 

Riesling 3179 7.4 8017 2.13 2.23 

Notes: Average yield and revenue per ha and coefficients of variation (CoV) based on data from 2001 

to 2022.   
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Table 2: Estimation results for models (1) and (2). 

Model → (1) (2) 

Dependent variable → ln_CoV_Yield ln_CoV_Revenue/ha 

Independent variable ↓ Coeff. SE Coeff. SE 

GST -0.096 *** 0.017 -0.019  0.015 

GSP 0.001 *** 0.000 0.000  0.000 

Variety dummy variables Yes   Yes   

Region dummy variables No   No   

ln_area -0.158 *** 0.020 -0.082 *** 0.018 

Constant 1.779 *** 0.389 0.191  0.291 

R2 0.599   0.303   

Notes: The dependent variables of models (1) and (2) are the natural logarithm 

of the coefficient of variation of yield and the natural logarithm of the coefficient 

of variation of revenue per ha, respectively. GST is the growing season average 

temperature and GSP is the growing season precipitation. ‘Coeff.’ stands for 

coefficient and ‘SE’ for robust standard errors. Statistical significance levels: *** 

= 1%, ** = 5%, and * = 10%. 
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Table 3: Estimation results for models (3) and (4). 

Model → (3) (4) 

Dependent variable → ln_CoV_Yield ln_CoV_Revenue/ha 

Independent variable ↓ Coeff. SE Coeff. SE 

Afus Ali -0.577 *** 0.137 -1.192 *** 0.180 

Arneis -1.127 *** 0.181 -0.657 *** 0.130 

Barbera -0.340  0.227 -0.274  0.179 

Cabernet Franc -0.190  0.137 -0.064  0.119 

Cabernet Sauvignon -0.058  0.049 0.016  0.032 

Cayetana Blanca 0.052  0.266 -0.185  0.214 

Chardonnay -0.126 ** 0.048 0.172 *** 0.046 

Chenin Blanc -0.166  0.185 -0.189  0.197 

Colombard -0.264 ** 0.109 -0.292 ** 0.133 

Crouchen 0.304 ** 0.146 -0.083  0.111 

Côt -0.233 ** 0.115 -0.145  0.122 

Dolcetto -1.997 *** 0.722 -2.254 *** 0.657 

Durif -0.055  0.188 -0.196  0.152 

Fiano 0.533 * 0.313 0.303  0.361 

Garnacha Tinta -0.166 * 0.086 -0.275 *** 0.101 

Gewürztraminer -0.222 ** 0.097 -0.277 *** 0.076 

Graciano -1.085 *** 0.360 -0.727  0.572 

Grüner Veltliner -0.547 *** 0.134 -0.524 *** 0.098 

Lagrein -0.550 *** 0.165 -0.488 *** 0.120 

Marsanne -0.211  0.281 -0.187  0.165 

Merlot -0.280 *** 0.088 -0.125 ** 0.061 

Monastrell -0.020  0.295 -0.165  0.230 

Montepulciano -0.506 * 0.266 -0.655 ** 0.266 

Muscadelle 0.105  0.154 -0.140  0.181 

Muscat Blanc à Petits Grains 0.372 *** 0.120 -0.062  0.141 

Muscat Blanc à Petits Grains (R) -0.187  0.197 -0.413 *** 0.095 

Muscat of Alexandria -0.181  0.117 -0.714 *** 0.148 

Nebbiolo -0.254  0.183 -0.174  0.152 

Nero d'Avola -0.100  0.938 -0.639  0.951 

Palomino Fino 0.426  0.328 -0.148  0.163 

Pedro Ximénez -0.402 ** 0.176 -0.666 ** 0.285 

Petit Verdot 0.107  0.191 0.057  0.170 

Pinot Gris 0.143 ** 0.068 0.031  0.060 

Pinot Meunier -0.375 * 0.203 -0.107  0.212 

Pinot Noir -0.176 ** 0.068 -0.160 ** 0.064 

Prosecco -0.119  0.175 0.082  0.076 

Riesling -0.354 *** 0.110 -0.283 *** 0.057 

Roussanne -0.577 * 0.319 -0.648 ** 0.309 

Ruby Cabernet 0.157  0.212 0.090  0.119 

Sangiovese -0.122  0.114 -0.063  0.108 

Sauvignon Blanc -0.202 *** 0.058 -0.111  0.081 

Sultaniye 0.960 *** 0.197 0.357  0.262 

Sémillon -0.178 *** 0.052 -0.058  0.053 
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Tarrango -0.299  0.291 -0.318 ** 0.132 

Tempranillo 0.151  0.165 0.124  0.126 

Touriga Nacional -0.899 ** 0.344 -0.821  0.578 

Trebbiano Toscano -0.626 *** 0.193 -0.804 *** 0.116 

Tribidrag -0.078  0.252 -0.210  0.265 

Verdelho -0.250 ** 0.103 -0.166 * 0.086 

Vermentino -0.326  0.249 -0.643 *** 0.239 

Viognier -0.105  0.137 0.056  0.102 

Adelaide Hills 0.014  0.030 0.072 * 0.039 

Adelaide Plains -0.103  0.092 0.216 *** 0.074 

Alpine Valleys -0.169 ** 0.078 0.024  0.075 

Beechworth 0.117  0.126 0.253 ** 0.114 

Bendigo -0.059  0.074 0.130 * 0.065 

Big Rivers - other 0.159 ** 0.075 0.219 *** 0.068 

Blackwood Valley 0.159 * 0.087 0.248 *** 0.080 

Canberra District 0.055  0.096 0.161 * 0.088 

Central Ranges - other 0.625 *** 0.099 0.526 *** 0.089 

Central Victoria - other 0.441 *** 0.099 0.482 *** 0.084 

Clare Valley -0.098 *** 0.023 0.103 *** 0.027 

Coonawarra 0.128 *** 0.015 0.265 *** 0.020 

Cowra 0.192 *** 0.050 0.333 *** 0.050 

Eden Valley -0.066  0.046 -0.062  0.048 

Fleurieu - other 0.317 *** 0.054 0.524 *** 0.051 

Geelong -0.341 *** 0.080 -0.472 *** 0.075 

Geographe 0.015  0.073 0.096  0.069 

Gippsland -0.248 ** 0.104 -0.317 *** 0.096 

Glenrowan -0.710 *** 0.101 -0.509 *** 0.090 

Goulburn Valley -0.518 *** 0.064 -0.064  0.056 

Grampians 0.013  0.076 0.036  0.065 

Granite Belt -0.028  0.115 0.005  0.095 

Great Southern 0.114 *** 0.041 0.094 ** 0.044 

Gundagai -0.066  0.077 -0.039  0.068 

Heathcote -0.350 *** 0.058 -0.287 *** 0.046 

Henty -0.190 * 0.101 -0.219 ** 0.097 

Hilltops 0.061  0.075 0.037  0.070 

Hunter Valley 0.394 *** 0.029 0.304 *** 0.035 

Langhorne Creek 0.084 *** 0.013 0.419 *** 0.019 

Limestone Coast - other -0.056 * 0.028 0.123 *** 0.032 

Macedon Ranges 0.072  0.108 0.042  0.098 

Manjimup 0.354 *** 0.122 0.302 *** 0.107 

Margaret River -0.059 *** 0.019 -0.123 *** 0.031 

McLaren Vale 0.097 *** 0.012 0.174 *** 0.011 

Mornington Peninsula 0.047  0.061 -0.157 ** 0.064 

Mudgee 0.417 *** 0.039 0.427 *** 0.043 

Murray Darling-Swan Hill (NSW) -0.357 *** 0.022 -0.196 *** 0.038 

Murray Darling-Swan Hill (Vic) -0.565 *** 0.039 -0.093 * 0.052 

North East Victoria - other -0.035  0.063 0.117 * 0.065 

Northern Rivers - other -0.649 *** 0.177 -0.240  0.153 
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Northern Slopes -0.200 * 0.113 -0.145  0.102 

Orange 0.039  0.059 0.241 *** 0.056 

Padthaway -0.109 *** 0.027 0.133 *** 0.033 

Peel -0.600 *** 0.147 -0.416 *** 0.125 

Pemberton 0.376 *** 0.067 0.252 *** 0.068 

Perricoota 0.535 *** 0.086 0.526 *** 0.078 

Perth Hills -0.300 *** 0.109 -0.202 ** 0.092 

Port Phillip - other -0.287 *** 0.097 -0.157 * 0.088 

Pyrenees 0.186 ** 0.073 0.236 *** 0.063 

Qld - other -0.322 ** 0.143 -0.136  0.117 

Riverina -0.744 *** 0.010 -0.178 *** 0.015 

Riverland -0.670 *** 0.024 0.159 *** 0.017 

Rutherglen 0.040  0.091 0.216 *** 0.069 

SA - other 0.049  0.058 0.207 *** 0.048 

South Burnett 0.091  0.115 0.237 ** 0.095 

South Coast - other -0.630 *** 0.130 -0.385 *** 0.116 

Southern New South Wales - other -0.258 ** 0.123 -0.050  0.103 

Strathbogie Ranges 0.064  0.079 0.222 *** 0.076 

Sunbury -0.642 *** 0.120 -0.210 ** 0.099 

Swan District 0.037  0.073 0.084  0.073 

Tasmania -0.370 *** 0.043 -0.509 *** 0.052 

Tumbarumba 0.083  0.086 -0.097  0.080 

Upper Goulburn 0.444 *** 0.097 0.399 *** 0.090 

WA - other -0.742 *** 0.097 -0.112  0.087 

Western Plains 0.456 *** 0.106 0.096  0.084 

Western Victoria - other 0.133  0.132 0.244 ** 0.117 

Wrattonbully 0.142 *** 0.028 0.296 *** 0.036 

Yarra Valley -0.061 * 0.035 -0.175 *** 0.042 

ln_area -0.103 *** 0.029 -0.066 *** 0.023 

Constant -0.145  0.238 -0.367 * 0.185 

R2 0.801   0.588   

Notes: The dependent variables of models (1) and (2) are the natural logarithm of the 

coefficient of variation of yield and the natural logarithm of the coefficient of variation of 

revenue per ha, respectively. ‘Coeff.’ stands for coefficient and ‘SE’ for robust standard 

errors. Statistical significance levels: *** = 1%, ** = 5%, and * = 10%. 
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Table 4: Expected difference (%) in the coefficient of variation of yield 

of a variety when compared to the six most-planted varieties. 

Variety Area (%) S CS C M SB PN 

Cabernet Franc 0.2 -17 -12 -6 9 1 -1 

Cabernet Sauvignon 18.3 -6  7 25 16 13 

Chardonnay 14.9 -12 -7  17 8 5 

Chenin Blanc 0.3 -15 -10 -4 12 4 1 

Colombard 1.0 -23 -19 -13 2 -6 -8 

Côt 0.5 -21 -16 -10 5 -3 -6 

Durif 0.6 -5 0 7 25 16 13 

Fiano 0.3 70 80 93 125 109 103 

Garnacha Tinta 1.2 -15 -10 -4 12 4 1 

Gewürztraminer 0.5 -20 -15 -9 6 -2 -4 

Merlot 5.6 -24 -20 -14  -7 -10 

Monastrell 0.6 -2 4 11 30 20 17 

Muscat Blanc à Petits Grains 0.7 45 54 65 92 78 73 

Muscat of Alexandria 1.3 -17 -12 -5 10 2 0 

Petit Verdot 0.8 11 18 26 47 36 33 

Pinot Gris 3.4 15 22 31 53 41 38 

Pinot Noir 4.2 -16 -11 -5 11 3  
Prosecco 0.2 -11 -6 1 17 9 6 

Riesling 2.2 -30 -26 -20 -7 -14 -16 

Ruby Cabernet 0.5 17 24 33 55 43 40 

Sangiovese 0.3 -11 -6 0 17 8 6 

Sauvignon Blanc 4.5 -18 -13 -7 8  -3 

Syrah 29.9  6 13 32 22 19 

Sémillon 2.6 -16 -11 -5 11 2 0 

Tempranillo 0.6 16 23 32 54 42 39 

Verdelho 0.7 -22 -18 -12 3 -5 -7 

Viognier 0.5 -10 -5 2 19 10 7 

Average of above  -5 1 8 27 17 14 

Average of all varieties  -12 -7 0 16 8 5 

Notes: ‘Area (%)’ refers to the percentage winegrape area planted to a variety in Australia 

as of 2022. Only those varieties with an area share higher than 0.2% are shown in this table. 

Those varieties are compared to the six most planted varieties in the last six columns. 

Variety abbreviations: S = Syrah, CS = Cabernet Sauvignon, C = Chardonnay, M = Merlot, 

SB = Sauvignon Blanc, and PN = Pinot Noir. Each number represents the percentage 

difference in the coefficient of variation of yield that is expected from a variety in the first 

column when compared to one of the varieties in the last six columns. For example, 

Cabernet Sauvignon is expected to have a coefficient of variation of yield that is 6% lower 

than the one of Syrah or 7% higher than the one of Chardonnay. The colour represents the 

level of significance of the coefficient used for computing each number: significant at the 

1% level, significant at the 5% level, significant at the 10% level, and not statistically 

significant (when not highlighted). All these computations are based on the results of model 

(3). ‘Average of above’ is the unweighted average of the varieties in the first column; 

‘Average of all varieties’ is the unweighted average of the varieties in the first column and 

all the others with an area lower than 2%. 
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Table 5: Expected difference (%) in the coefficient of variation of 

revenue per ha of a variety when compared to the six most-planted 

varieties. 

Variety Area (%) S CS C M SB PN 

Cabernet Franc 0.2 -6 -8 -21 6 5 10 

Cabernet Sauvignon 18.3 2  -14 15 14 19 

Chardonnay 14.9 19 17  35 33 39 

Chenin Blanc 0.3 -17 -19 -30 -6 -8 -3 

Colombard 1.0 -25 -27 -37 -15 -17 -12 

Côt 0.5 -14 -15 -27 -2 -3 2 

Durif 0.6 -18 -19 -31 -7 -8 -3 

Fiano 0.3 35 33 14 53 51 59 

Garnacha Tinta 1.2 -24 -25 -36 -14 -15 -11 

Gewürztraminer 0.5 -24 -25 -36 -14 -15 -11 

Merlot 5.6 -12 -13 -26  -1 4 

Monastrell 0.6 -15 -17 -29 -4 -5 0 

Muscat Blanc à Petits Grains 0.7 -6 -8 -21 6 5 10 

Muscat of Alexandria 1.3 -51 -52 -59 -45 -45 -43 

Petit Verdot 0.8 6 4 -11 20 18 24 

Pinot Gris 3.4 3 1 -13 17 15 21 

Pinot Noir 4.2 -15 -16 -28 -4 -5  
Prosecco 0.2 9 7 -9 23 21 27 

Riesling 2.2 -25 -26 -37 -15 -16 -12 

Ruby Cabernet 0.5 9 8 -8 24 22 28 

Sangiovese 0.3 -6 -8 -21 6 5 10 

Sauvignon Blanc 4.5 -11 -12 -25 1  5 

Syrah 29.9  -2 -16 13 12 17 

Sémillon 2.6 -6 -7 -21 7 5 11 

Tempranillo 0.6 13 11 -5 28 27 33 

Verdelho 0.7 -15 -17 -29 -4 -5 -1 

Viognier 0.5 6 4 -11 20 18 24 

Average of above  -7 -9 -23 6 4 10 

Average of all varieties -20 -21 -33 -9 -10 -6 

Notes: ‘Area (%)’ refers to the percentage winegrape area planted to a variety in Australia 

as of 2022. Only those varieties with an area share higher than 0.2% are shown in this table. 

Those varieties are compared to the six most planted varieties in the last six columns. 

Variety abbreviations: S = Syrah, CS = Cabernet Sauvignon, C = Chardonnay, M = Merlot, 

SB = Sauvignon Blanc, and PN = Pinot Noir. Each number represents the percentage 

difference in the coefficient of variation of revenue per ha that is expected from a variety 

in the first column when compared to one of the varieties in the last six columns. For 

example, Cabernet Sauvignon is expected to have a coefficient of variation of revenue per 

ha that is 14% lower than the one of Chardonnay or 15% higher than the one of Merlot. 

The colour represents the level of significance of the coefficient used for computing each 

number: significant at the 1% level, significant at the 5% level, significant at the 10% 

level, and not statistically significant (when not highlighted). All these computations are 

based on the results of model (4). ‘Average of above’ is the unweighted average of the 

varieties in the first column; ‘Average of all varieties’ is the unweighted average of the 

varieties in the first column and all the others with an area lower than 2%. 
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Table 6: Expected differences (%) in the coefficients of variation 

of yield and revenue per ha of a region when compared to Barossa 

Valley. 

Region Area CoV difference (%) 

 ha % Yield Revenue/ha 

Mudgee 1909 1.3 52 53 

Hunter Valley 2622 1.8 48 35 

Cowra 930 0.6 21 39 

Pyrenees 878 0.6 20 27 

Wrattonbully 2617 1.8 15 34 

Coonawarra 5479 3.8 14 30 

Great Southern 2415 1.7 12 10 

McLaren Vale 7160 5.0 10 19 

Langhorne Creek 5864 4.1 9 52 

Mornington Peninsula 901 0.6 5 -15 

Rutherglen 790 0.5 4 24 

Orange 1061 0.7 4 27 

Swan District 893 0.6 4 9 

Geographe 788 0.5 2 10 

Adelaide Hills 3607 2.5 1 7 

Barossa Valley 11445 7.9   
Margaret River 5592 3.9 -6 -12 

Yarra Valley 2478 1.7 -6 -16 

Eden Valley 2195 1.5 -6 -6 

Clare Valley 4973 3.4 -9 11 

Padthaway 3608 2.5 -10 14 

Heathcote 1686 1.2 -30 -25 

Murray Darling-Swan Hill (NSW) 7028 4.9 -30 -18 

Tasmania 2069 1.4 -31 -40 

Goulburn Valley 1211 0.8 -40 -6 

Murray Darling-Swan Hill (Vic) 8699 6.0 -43 -9 

Riverland 19850 13.7 -49 17 

Riverina 17108 11.8 -52 -16 

Notes: ‘Area’ refers to the winegrape area planted in a region in Australia as of 2022. 

Only those regions with an area share higher than 0.5% are shown in this table. Each 

number in the last two columns represents the percentage difference in the 

coefficient of variation of yield or revenue per ha that is expected in a region when 

compared to Barossa Valley. For example, Mudge is expected to have a coefficient 

of variation of yield that is 52% higher than that of Barossa Valley. The colour 

represents the level of significance of the coefficient used for computing each 

number, also compared to Barossa Valley: significant at the 1% level, significant 

at the 5% level, significant at the 10% level, and not statistically significant (when 

not highlighted). All these computations are based on the results of models (3) and 

(4). 

 

 


