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Abstract 

In an ever-more-competitive global beverage market, vignerons compete for the 

attention of consumers by trying to differentiate their wine from others while also 

responding to technological advances, climate change, and evolving demand 

patterns. In doing so, they highlight their regional and varietal distinctiveness while 

keeping an eye on changes in consumer preferences for different varieties. This 

paper examines and seeks to explain the extent to which winegrape varietal mixes 

vary across regions and over time within Australia and relative to the rest of the 

world. It reports changes in indexes of similarity across regions, and indexes of 

concentration in the winegrape varietal mix within regions. Nationally the varietal 

mix has become less differentiated and closer to that of France and the world as a 

whole. However, individual regions within Australia are becoming more 

concentrated in their mix of varieties and more differentiated from other Australian 

regions. We estimate supply response models based on a Nerlovian adaptive profit 

expectations and partial acreage adjustment framework. These models do not 

provide insights into many of the variables influencing vignerons’ planting 

decisions, but they help explain recent changes in varietal mixes. The results 

suggest changes in varietal mixes are more motivated by expected revenues than 

by what may work best based on the climate of each region. In the wake of climate 

change and global wine demand premiumizing, some Australian vignerons may 

find their region is too warm for producing high-quality wine with the winegrape 

varieties planted there. 

 

Keywords: grape cultivar, winegrape concentration, winegrape similarities, supply response, 

acreage response, Nerlovian adaptive expectations and partial adjustment model, climate 

change 

JEL classification: D24, L66, Q13 

1. Introduction 

Australia’s vignerons have both produced and exported around 180 winegrape varieties from 

70+ regions and sub-regions over the past two decades. However, as in the rest of the world 

(see Anderson and Nelgen (2021), Puga and Anderson (2023)), the main French varieties have 

become more dominant, and regions’ varietal mixes have become more concentrated. This 
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happened while the nation’s total bearing area changed dramatically in delayed responses to a 

rise and then a fall in winegrape prices: during 2000-08 the area expanded by two-thirds 

(having already doubled in the 1990s), and then it shrunk by one-sixth by 2014 before 

plateauing (Figure 1). 

 

Figure 1: Winegrape bearing area by state (bars, left axis in hectares), and prices of 

winegrapes and of exported wine (lines, right axis in AUD/tonne and cents/litre), 

Australia, 1995 to 2022. 

Source: Anderson and Puga (2023a). 

Deciding which varieties of winegrapes to plant is difficult, for two key reasons. First, 

it depends on how well each variety is expected to grow and at what cost in the vigneron’s 

particular location/terroir, and how that expectation is evolving as the perception of the 

location’s climate changes. Adaptation strategies include switching to warmer-climate or 

more-resilient grape varieties for that region and sourcing more grapes of their favoured 

varieties from cooler regions with a higher latitude or elevation or closer to the sea.  

The second key reason the grower’s varietal choice is difficult is that it depends on the 

expected revenue per hectare of each variety relative to near substitutes, and that varies through 

time with fluctuations in relative yields per hectare and in global availability and changes in 

consumer preferences and hence in relative grape prices. For varieties that are coming into 

favour, there is on the one hand a shared incentive to shift towards them. On the other hand, 

there is a possible benefit from differentiating one’s offering from the mainstream and having 

a wider-than-average mix of varieties. That may be especially so for smaller vignerons heavily 

reliant on direct-to-consumer wine sales through the cellar door and an associated loyalty club. 

Globalization is complicating the issue for vignerons because greater market openness 

increases the opportunity to specialize in production and sell more abroad – but it also increases 

potential import competition and so may reduce their domestic sales. This two-edged sword 

has emerged rapidly: the extent to which global wine production is exported (and global wine 

consumption is met by imports) has increased from around 20% in the 1990s to 30% in the 

2000s, 40% in the 2010s and now almost 45% (Anderson and Pinilla, 2021). By choosing to 

specialize and become more export-focused, a vigneron is taking on more risk in terms of not 

just overall variation in yield per hectare and domestic prices but also foreign prices, foreign 

exchange rates, and market access risks. 
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The remainder of this article is organised as follows. Section 2 describes a newly 

compiled annual Australian database for 72 wine-growing regions and 23 vintages (2001 to 

2023). The data are more precise for South Australian regions (comprising half of the nation’s 

vine bearing area) than for the rest of the country’s regions. Section 3 provides, as background, 

a summary of the evolution and current state of the varietal mixes in those regions. This 

summary is based on an index of varietal concentration and an index of varietal similarity, as 

well as on some relatively simple statistical analyses that rely on these indexes. They reveal 

the considerable but varying extent to which both concentration and similarity have altered 

over the past two decades. Section 4 describes the Nerlovian adaptive expectations and partial 

adjustment framework, in which we base the supply response models that are detailed in 

Section 5. Then Section 6 presents and discusses the results of these supply response models 

for South Australia. Last, Section 7 concludes by drawing out implications for the nation’s 

industry. 

2. Data 

Fortunately, South Australia, which accounts for almost half the national vineyard area, is well 

served with data because of the required annual reporting by South Australian growers to 

Vinehealth Australia (2014 and earlier) and now published by Wine Australia (2022a and 

earlier). For the rest of Australia, there has been no official data on the bearing or total area of 

winegrapes by variety and region since 2015. That was when the Australian Bureau of Statistics 

(ABS) stopped collecting data on national, state and regional vine areas by variety. Nor did it 

collect them in 2009, 2011, 2013 and 2014 (see ABS (2015 and earlier)). So until recently it 

had not been possible to trace changes for those missing years in that basic statistic outside of 

South Australia. That led Anderson and Puga (2023a) to compile a database for wine regions 

outside South Australia and thus also for each of the other States and the nation as a whole. 

They did so by bringing together available annual data from various sources for winegrape 

crush volumes and prices by variety and region (Wine Australia (2022b and earlier)), and then 

making a series of assumptions (detailed in the Appendix in Anderson and Puga (2023b)) to 

estimate the missing bearing area data.  

In total, there are 72 regions in the database, a little more than the 65 legally defined 

Geographic Indications (GIs) because of changes in definitions of GIs over time including the 

emergence of some sub-regions, and despite needing to aggregate some small new regions. 

Area, production, and price data are available for 118 ‘prime’ varieties (prime as defined by 

Anderson and Nelgen (2020) based on Robinson et al. (2012) or otherwise www.vivc.de). 

There are also another 64 more minor prime varieties whose data are aggregated into ‘other 

red’ or ‘other white’ for confidentiality reasons. Of that total of 183 varieties, wines from 178 

of them have been exported at some time in the past two decades – but just five accounted for 

around four-fifths of the total volume of Australia’s wine exports in the past five years. 

3. Background 

The varietal mix of the national vine area has cycled over the decades. Thanks to changes in 

domestic preferences, red varieties rose in importance in the 1960s and 1970s before being 

taken over by whites in the 1980s – and then regaining their dominance in the 1990s and 

holding on to it since then (Anderson, 2015). This mirrors changes since 1990 in the rest of the 

world, where red’s share rose from 46% to 49% by 2000 and to 56% by 2016 (Anderson and 

Nelgen, 2021). If China’s obsession with reds is an important part of the reason for this 

century’s colour swing, one might expect red’s global share to fall over the 2020s given that, 
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according to Anderson (2023), China’s wine production has shrunk hugely and its imports have 

halved since 2017 – and almost completely stopped from Australia which is why the share of 

reds in Australia’s wine exports has dipped recently.  

The main varieties grown in Australia drifted away from the varieties commonly used 

up to the 1950s for fortified wines and toward the key varieties that produce premium still and 

sparkling wines (Figure 2). The country of origin of most of today’s varieties is France. Again 

that change in Australia mirrors what is happening in the rest of the world, with key French 

varieties becoming more popular everywhere (Anderson and Nelgen, 2021). The extent of the 

swing toward French varieties in Australia leading up to the turn of the century was extreme. 

In the 1950s/early 1960s, the share originating from Spain was more than 40% while the French 

share was no more than that of Greece at just under 20%, with Turkey next at around 10% 

(because of Sultana). By the early 1980s, the shares of Spanish and French varieties had 

reversed, and by the turn of the century Spanish shares were less than 4% (because of 

Grenache’s share falling from 20% in the late 1950s to 1% today) and France’s had risen to 

almost 80% – and to 90% by 2011. 

 

Figure 2: Evolution of the Australian varietal mix (in terms of bearing area) based on the 

country of origin of the winegrape varieties. 

Source: Anderson and Puga (2023a). 

Associated with the increasing similarity of Australia’s national winegrape varietal mix 

with the world is a greater concentration on fewer varieties (Puga and Anderson, 2023). In 

Australia’s case, the top ten varieties by area have accounted recently for 87% of the national 

area, whereas the share of the top ten in 2001 was 83%. True, many vignerons are exploring 

‘alternative’ or ‘emerging’ varieties (see, e.g., Higgs (2019), Allen (2023)), but as yet those 

make up just 3.0% of the nation’s vineyard area and 1.5% of its volume of exports. 

For quantifying varietal concentration, we use the varietal concentration index (VCI) 

defined by Puga and Anderson (2023) as: 

𝑉𝐶𝐼𝑖 = 100(∑ 𝑓𝑖,𝑣
2𝑉

𝑣=1 ). (1) 

Here, 𝑓𝑖,𝑣
2  is the square value of the bearing area of variety 𝑣 in region (or country) 𝑖 as a 

proportion of the total winegrape bearing area in that region (or country). The same formula 

has been used for indexes in other disciplines. Two key examples are the Herfindahl–

Hirschman concentration index in economics and the Simpson index in ecology (Simpson, 
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1949). The interpretation of the VCI is that if two different winegrape blocks are randomly 

chosen, the probability (expressed as a percentage) of those winegrape blocks having the same 

variety is equal to the value of the index.  

In aggregate, the Australian VCI has increased from 12.0 in 2000 to 15.6 in 2016, well 

above the 2016 values for France, Italy and Spain – all of whose VCIs fell over that period 

(Anderson and Puga, 2023). The changes in Australia’s regional VCIs between 2001 and 2022 

are shown in Table A.1.  Evidently, the varietal mixes of the warm irrigated regions have 

become a little less concentrated over those two decades, while the mixes of most other regions 

have become more concentrated, including three of the next largest (Barossa Valley, McLaren 

Vale and Coonawarra). 

Besides looking at varietal concentration, we explore similarities in the varietal mix 

using the varietal similarity index (VSI), first introduced by Anderson (2010). The VSI for 

regions 𝑖 and 𝑗 takes the form: 

𝑉𝑆𝐼𝑖𝑗 =
∑ 𝑓𝑖,𝑣𝑓𝑗,𝑣

𝑉
𝑣=1

(∑ 𝑓𝑖,𝑣
2 )𝑉

𝑣=1
1/2

(∑ 𝑓𝑗,𝑣
2 )𝑉

𝑣=1
1/2, 

(2) 

where 𝑓𝑖,𝑣 (𝑓𝑗,𝑣) is the bearing area of variety 𝑣 in region 𝑖 (𝑗) as a proportion of the total 

winegrape bearing area in that region. The VSI ranges between 0 and 1. The closer the index 

is to 1, the more similar the varietal mix between the two regions. More specifically, an index 

of 0 indicates a completely different mix of winegrape varieties, while an index of 1 means that 

both regions have exactly the same varieties and the same proportional area for each of those 

varieties.  

This same formula can be used to compute the VSI between a region and Australia, or 

between a region (or Australia) and the world as a whole. Australia’s convergence towards the 

global mix is evident as in 2001 the VSI for Australia vis-à-vis the world mix was 0.47, but in 

2022 it was 0.66. The varietal mixes of all but two (small) wine regions of Australia have 

moved towards the global mix, and there are only eight regions whose VSIs vis-à-vis the world 

has moved by less than one-fifth: Adelaide Hills, Barossa Valley, and McLaren Vale in South 

Australia; Grampians, Mornington Peninsula, and Yarra Valley in Victoria; Western 

Australia’s Swan District; and Tasmania (Table A.1). 

The changes in the regional and state VSIs vis-à-vis the national varietal mix are quite 

varied. Tasmania’s and Western Australia’s VSIs have fallen a lot while Victoria’s has risen 

from 0.85 to 0.96 and so is now almost the same as South Australia’s and New South Wales’. 

The VSIs of the warm irrigated regions (along the Murray, Murrumbidgee, and Goulbourn 

rivers, plus Langhorne Creek and Padthaway) also have risen and moved into the 0.93 to 0.96 

range. By contrast, for four of the cooler regions, their VSI relative to Australia’s has fallen by 

between one-fifth and one-third since 2001 (Adelaide Hills, Mornington Peninsula, Tasmania, 

and Yarra Valley). 

We use the method developed by Puga and Anderson (2023) to cluster some of the 

largest regions based on their varietal similarities. Figure 3 shows these clusters. The longer 

the horizontal lines linking regions or groups of regions, the more dissimilar they are. The 

regions represented in this figure are some major regions for which Nordestgaard (2019) 

provides data on their production systems. Using those data, Puga et al. (2022a) classify these 

regions into six groups. Figure 3 shows that regions with similar production systems are often 

more similar in their mix of winegrape varieties. 



6 

 

 

Figure 3: Dendogram based on 2023 VSIs. 

Notes: VSI is the varietal similarity index. Dissimilarity = 1 - VSI. Longer horizontal lines linking 

regions or groups of regions are associated with lower similarities in their varietal mix. The numbers 

before the name of each region denote groups of regions with similar production systems, based on a 

classification by Puga and Anderson (2022) using data on 103 characteristics of the production system 

of each region (from Nordestgaard (2019)). 

 Source: Authors’ compilation. 

We may expect regions to have a more-similar varietal mix the more similar are their 

climates. Figure 4 shows the ideal growing season temperature ranges for some key varieties 

widely planted in Australia, according to Jones et al. (2011). Some varieties are better suited 

to some regions, and the climate of those regions often determines a big part of that suitability. 

Figure 3 suggests that some of the regions with a more similar varietal mix have more-similar 

climates. Indeed, the production systems of the regions depend to a certain extent on their 

climates. 
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Figure 4: Ideal growing season temperature ranges for producing high-quality wine of 

different varieties. 

Notes: Each horizontal bar represents the ideal growing season temperature range for producing high-

quality wine according to Jones et al. (2011). Barossa Valley is the largest region after the hot irrigated 

regions, of which the Riverland is the largest. 

Source: Adapted from Jones et al. (2011) by the authors.  

We may also expect regions to become more similar when they share a more similar 

climate. For testing this, we first use data for 2002 and 2022 to calculate the difference in the 

bearing area of each variety in each region. We then use those area differences to calculate an 

index similar to the one given by equation (1). However, by using area differences between 

two years as opposed to total area, we obtain an index that takes values between -1 and 1. An 

index of -1 (1) would mean that the proportional area planted to each variety has changed in 

the opposite (the same) way between the two regions. The vertical axis of Figure 5 shows this 

index, while its horizontal axis shows the difference in growing season temperature between 

regions. However, Figure 5 does not show a negative relationship between this index and the 

difference in growing season temperature between the two regions. Indeed, when regressing 

this temperature difference on this index, the slope coefficient is not statistically significant. 
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Figure 5: Index of change in varietal similarities across regions 

between 2002 and 2022 vs difference in their growing season 

temperature. 

Source: Authors’ compilation. 

In the light of this considerable variation across regions in changes in their VSIs and 

VCIs over the past two decades, we turn now to see to what extent the changes in the varietal 

mix can be explained by changes in winegrape prices and gross revenues per hectare. It is clear 

from our data that there is considerable variation in prices and gross revenue per hectare across 

varieties and regions, and over time. 

4. Theoretical framework 

The two major frameworks in the supply response literature are the Nerlovian partial 

adjustment model and the supply function approach (Haile et al., 2015). Since the supply 

function approach demands more input data than we have available, we derive our models from 

the framework developed by Nerlove (1956a, 1956b). This framework has been used to analyse 

the dynamics of crop supply in a wide variety of settings (Vitale et al., 2009).  

 In Nerlove’s model, the desired area (𝐴𝑟𝑒𝑎𝑡
𝑑) in year 𝑡 is given by: 

𝐴𝑟𝑒𝑎𝑡
𝑑 = 𝛼1 + 𝛼2𝑃𝑟𝑖𝑐𝑒𝑡

𝑒 + 𝜐𝑡. (3) 

In this equation, 𝑃𝑟𝑖𝑐𝑒𝑡
𝑒 is the expected price of the crop in year 𝑡; the 𝛼𝑠 are parameters, with 

𝛼2 representing the long-run coefficient of supply response; and 𝜐𝑡 accounts for unobserved 

random variables affecting the area and has an expected value of zero.  

Producers are assumed to move towards a long-run equilibrium or desired area planted 

to a given crop. However, full adjustment to the desired area is not feasible in the short run. 

The actual adjustment is expected to be just a fraction of the desired adjustment 𝛿 so that: 

𝐴𝑟𝑒𝑎𝑡 − 𝐴𝑟𝑒𝑎𝑡−1 = 𝛿(𝐴𝑟𝑒𝑎𝑡
𝑑 − 𝐴𝑟𝑒𝑎𝑡−1) + 𝜈𝑡. (4) 

The 𝛿 is the partial adjustment coefficient and is expected to take a value between 0 and 1, 

hence the name of this coefficient. Like 𝜐𝑡 in equation (3), 𝜈𝑡 is also a random term with an 

expected value of zero. 

The main reason why growers may not be in an equilibrium position at any point in 

time is because of adjustment costs (Nerlove, 1972). The inertia of production decisions also 
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justifies the dynamic nature of the model (Hausman, 2011). The adaptive expectations 

parameter captures the non-static nature of area changes by taking values between zero and 

one. This assumption of partial adjustment has been criticized due to agronomic incentives 

such as crop rotation. Hendricks et al. (2014) provide theoretical and empirical evidence that 

the supply of annual crops may respond more to price shocks in the short run than in the long 

run. However, in the context of perennial crops, where there is no rotation, we expect the 

adaptive expectations parameter to be bounded between zero and one. 

Since future prices for a crop are unknown, the expected prices should be based on a 

series of assumptions based on farmers’ beliefs. The model also assumes that there is an 

expected price formed in each period. While this expected price changes year by year, price 

expectations are static, meaning that the expected price is predicted to be the same in all 

subsequent periods. The adaptive expectation hypothesis of Nerlove (1956a, 1956b) states that 

producers revise their price expectations based on their errors in the previous year. This 

hypothesis is an alternative to older expectation models such as the naïve expectation 

hypothesis (Ezekiel, 1938) in which the expected prices are the prices observed in the previous 

season. 

Adaptive expectations imply that producers adjust their price expectations as a fraction 

𝛾 of the mistake they made in the previous year1. In other words, the difference between the 

actual and the expected price in the previous year (𝑃𝑟𝑖𝑐𝑒𝑡
𝑒 − 𝑃𝑟𝑖𝑐𝑒𝑡−1

𝑒 ), so that: 

𝑃𝑟𝑖𝑐𝑒𝑡
𝑒 − 𝑃𝑟𝑖𝑐𝑒𝑡−1

𝑒 = 𝛾(𝑃𝑟𝑖𝑐𝑒𝑡−1 − 𝑃𝑟𝑖𝑐𝑒𝑡−1
𝑒 ) + 𝜀𝑡. (5) 

The 𝛾 is the adaptive expectations coefficient and it is expected to take a value between 0 and 

1. Again, 𝜀𝑡 is a random term with an expected value of zero. 

Equation (5) can be solved so that: 

𝑃𝑟𝑖𝑐𝑒𝑡
𝑒 = 𝛾 ∑(1 − 𝛾)𝑖−1𝑃𝑟𝑖𝑐𝑒𝑡−𝑖

∞

𝑖=1

. 
(6) 

The interpretation of this equation is that the expected price is a weighted sum of all past prices 

with a geometrically declining set of weights. 

Equations (3), (4), and (5) can be combined so that: 

𝐴𝑟𝑒𝑎𝑡 = 𝛽0 + 𝛽1𝑃𝑟𝑖𝑐𝑒𝑡−1 + 𝛽2𝐴𝑟𝑒𝑎𝑡−1 + 𝛽3𝐴𝑟𝑒𝑎𝑡−2 + 𝜖𝑡. (7) 

The 𝛽𝑠 are parameters to be estimated and 𝜖𝑡 is a zero-mean error term. The 𝛽1 coefficient 

gives the short-run coefficient of price response. Further, even though the desired areas and the 

expected prices are not observed, it is possible to retrieve the long-run price response 

coefficient. It is 𝛼2 from equation (3), which can be calculated as −𝛽1/(𝛽2 + 𝛽3 − 1). Since 

                                                 

1 A theoretical limitation of the adaptive expectation hypothesis is that it is not derived from production theory 

(de Castro and Teixeira, 2012). Other price expectation hypotheses have been commonly used in Nerlovian partial 

adjustment models. The rational expectation hypothesis (Muth, 1961) assumes expectations are consistent with 

the underlying market structure and that producers use all the available information. Following Gardner (1976), 

future prices have been widely used to proxy expected prices. However, future prices are rarely available for crops 

such as winegrapes. Nerlove and Bessler (2001) review six models of expectation formation (including adaptive, 

rational, quasi-rational, and future prices) and recommend the quasi-rational model for estimating expected prices 

in agricultural supply analysis. The quasi-rational expectation hypothesis is potentially more realistic and easier 

to apply than the rational expectation hypothesis (Holt and McKenzie, 2003). Still, the literature is inconclusive 

and different types of price expectation models are commonly used. Adaptive expectations is a good alternative 

for cases with limited data, as in the present case. 
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both 𝛿 and 𝛾 should be bounded between zero and one, the long-run supply response should 

be larger than the short-run supply response.  

An important consideration is that model (7) assumes that there is a separation of 

growers’ expectations from their plans and decisions. While this separation assumption is 

theoretically incorrect, it is necessary for empirically analysing the problem of dynamic 

optimization behaviour under uncertainty (Nerlove and Bessler, 2001).  

Ultimately, growers will make their investment decisions to increase their future 

expected profits. Under the Marshallian/Jorgensonian decision rule, a grower will plant a 

vineyard when: 

𝑀𝑃𝐾 ≥ 𝑀𝑃𝐾∗ = ρ, (8) 

where 𝑀𝑃𝐾 is the expected marginal product of capital during a vineyard’s expected life cycle, 

𝑀𝑃𝐾∗ is the threshold in which it is optimal to plant, and ρ is the discount rate. 

Dixit and Pindyck (1994) argue that the threshold in which it is optimal to invest is 

higher than the discount rate ρ because there is value in waiting and postponing the decision of 

investing. While the Marshallian/Jorgensonian decision rule considers uncertainty, the model 

of Dixit and Pindyck (1994) also assumes that investments have some unrecoverable 

investment costs and that a grower can invest in a project in the future if not doing it at present 

(Chirinko, 1996). The value of postponing an investment decision while trying to gather more 

information may also explain the nature of partial adjustments in the Nerlove (1956a, 1956b) 

model.  

5. Supply response models 

Perennial cropping involves long-term investments with long gestation intervals between 

planting and first harvesting (about three years in the case of winegrapes). Then after a period 

of intense productivity, perennial crops’ productivity starts declining until the aged plants are 

removed. The Nerlovian partial adjustment framework has long been used for studying the 

supply of perennial crops. However, this framework has often been extended to account for 

differences between perennial and annual crop production. 

One of the most widely used extensions of the Nerlovian framework to perennial crops 

consists of estimating plantings and removals equations separately. French and Matthews 

(1971) build on early studies to develop a theoretical framework to model the supply responses 

of perennial crops. In their model, area is estimated based on an identity function in which the 

total area equals the previous area, plus new plantings, minus removals. Recent examples of 

studies that distinguish between new plantings and removals (or net plantings) when modelling 

perennial crop supply are Devadoss and Luckstead (2010) and Ouattara et al. (2019). 

Unfortunately, at present we do not have reliable data on new plantings and removals 

that would allow us to estimate these extensions of the Nerlovian framework. Therefore, we 

focus on total area data for South Australia. In other states, the data are available for bearing 

area as opposed to total area (Anderson and Puga (2023a), so using data for those states would 

be inappropriate for estimating these kinds of supply response models. 

We first estimate a restricted Nerlovian supply response model, similar to the one 

specified in equation (7). However, our model is adapted to the specific case of changes in area 

by variety and region, and includes fixed effects. This Nerlovian adaptive profit expectations 

and partial acreage adjustment model is given by: 
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𝑙𝑛𝐴𝑟𝑒𝑎𝑣𝑟,𝑡 = 𝛽0 + 𝛽1𝑙𝑛𝑃𝑟𝑖𝑐𝑒𝑣𝑟,𝑡−1 + 𝛽2𝑙𝑛𝐴𝑟𝑒𝑎𝑣𝑟,𝑡−1 +

𝛽3𝑙𝑛𝐴𝑟𝑒𝑎𝑣𝑟,𝑡−2 + 𝜑𝑣𝑟 + 𝜏𝑡 + 𝜖𝑣𝑟,𝑡. 

(9) 

The dependent variable is the area of variety 𝑣 in region 𝑟 and year 𝑡. The independent variables 

are the price of that variety in that region in the previous year, the first and second lag of the 

dependent variable, group (variety-by-region) fixed effects (𝜑𝑣𝑟), and time fixed effects (𝜏𝑡). 

The 𝛽𝑠 are coefficients to be estimated, 𝛽0 is a constant, and 𝜖𝑣𝑟,𝑡 denotes the error term. 

The main difference between models (7) and (9) is that the latter includes fixed effects. 

The variety-by-region fixed effects capture time-invariant characteristics of each variety-by-

region that influence its area, while the time fixed effects account for shocks that impact the 

changes in the area planted to winegrapes in a given year for all varieties and in all regions. 

As with any Nerlovian supply response model, of particular interest are the coefficients 

of supply response. The 𝛽1 coefficient is the short-run price response. The long-run price 

response is given by −𝛽1/(𝛽2 + 𝛽3 − 1). Since these variables are natural logarithms, these 

responses are elasticities. 

As a robustness check, we estimate three modified versions of model (9). First, instead 

of using 𝑙𝑛𝑃𝑟𝑖𝑐𝑒𝑣𝑟,𝑡−1 as an independent variable, we use the lag of the price of variety 𝑣 in 

region 𝑟 relative to the average price of all varieties sold in that region and year. We also 

estimate two models in which we use an explanatory variable that depends on the revenue 

rather than the price. In the first of those models, that independent variable is the lag of the 

natural logarithm of the gross revenue per hectare of variety 𝑣 in region 𝑟. This variable is 

intended to capture revenue expectations, hence we calculate it as a product between the price 

in a given year and the average yield across the time period. In the second of those models, the 

explanatory variable is the lag of the revenue of variety 𝑣 in region 𝑟 relative to the average 

revenue for all varieties sold in that region and year. 

Besides estimating model (9), we estimate another perhaps even more ad-hoc model, 

following Alston et al. (2015). Unlike with model (9), here we estimate one model per region. 

This model is given by: 

𝑙𝑛𝑓𝑣,𝑡 = 𝛽0 + 𝛽1𝑙𝑛𝐶𝐴𝑣,𝑡 + 𝛽2𝑙𝑛𝑓𝑣𝑟,𝑡−1 + 𝜑𝑣 + 𝜏𝑡 + 𝜖𝑣,𝑡. (10) 

The dependent variable is the natural logarithm of the share of total winegrape area planted to 

variety 𝑣 in year 𝑡. The independent variables are the natural logarithm of a measure of 

comparative advantage for that variety in that year (𝑙𝑛𝐶𝐴𝑣,𝑡), the lag of the dependent variable, 

variety fixed effects (𝜑𝑣𝑟), and time fixed effects (𝜏𝑡). The 𝛽𝑠 are coefficients to be estimated, 

𝛽0 is a constant, and 𝜖𝑣𝑟,𝑡 denotes the error term. 

The measure of regional comparative advantage is given by: 

𝐶𝐴𝑣,𝑡 =
𝑃𝑣,𝑡𝑌𝑣,𝑡

𝑃̅𝑡𝑌̅𝑡
. (11) 

For a variety 𝑣, this measure is the average revenue per hectare of that variety relative to the 

average revenue per hectare of all varieties in the region. However, in model (10) we use the 

5-year moving average of the measure specified in equation (11). We calculate this moving 

average with the years for which there are available data, as sometimes there is no data 

available for some of the previous five years (e.g., in the early years). 

Model (10) is also a Nerlovian partial adjustment model as it assumes that the 

interannual proportional change in varietal share is equal to a fixed fraction of the proportional 

difference between the desired share and the actual share in the previous year. Therefore, the 
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𝛽1 coefficient is the short-run supply elasticity, while the long-run supply elasticity is given by 

𝛽1/(1 − 𝛽2). 

We estimate models (9) and (10) using ordinary least squares (OLS). We estimate 

model (9) with robust standard errors clustered at the variety-by-region level to correct for 

heterogeneity given the differences between areas between variety-by-region combinations. 

Similarly, following Alston et al. (2015), we cluster the standard errors of model (10) due to 

the large differences between varietal shares. 

6. Results and discussion 

Table 1 shows the estimation results of model (9). The high coefficient of determination shows 

that this model fits the data very well, something we expect from a model with two lags of the 

dependent variable and so rich in fixed effects. The coefficients of the natural logarithm of the 

lags of price and area are positive as they are expected to be, and except for the coefficient of 

the second lag of the dependent variable, they are also statistically significant at the 1% level. 

Table 1: Estimation results of model (9).  

Variable Coefficient Standard error 

𝑙𝑛𝑃𝑟𝑖𝑐𝑒𝑣𝑟,𝑡−1 0.0744*** 0.0186 

𝑙𝑛𝐴𝑟𝑒𝑎𝑣𝑟,𝑡−1 0.7741*** 0.0467 

𝑙𝑛𝐴𝑟𝑒𝑎𝑣𝑟,𝑡−2 0.0027 0.0372 

Constant 0.0067** 0.1565 

Time fixed effects Yes  

Variety-by-region fixed effects Yes  

R2 0.9939  

Notes: *** denotes statistical significance at the 1% level. Robust 

standard errors clustered at the variety-by-region level. 

Of particular interest are the price elasticities. The short-run supply elasticity is 0.0744, 

while the long-run elasticity is 0.3334. Compared to previous supply response studies for 

annual crops, this short-run elasticity is smaller, but the long-run elasticity is in a similar range 

to those that are usually obtained for annual crops. The difference between the short-run supply 

response for annual crops and the present one for a perennial crop may be due to the fact that 

grape growing is a very capital-intensive activity with long investment horizons. 

The fixed effects are omitted in Table 1 to save space, but Figure 6 shows a plot of the 

time fixed effects. These time fixed effects capture time shocks common to all variety-by-

region combinations, so they account for overall changes in the area that are not explained by 

changes in prices. Figure 6 suggests that until 2008 vignerons might have been overly 

optimistic towards planting vineyards than what might be expected from the adaptive 

expectations hypothesis. The opposite case seems to have happened since 2008, although the 

observed negative trend may also be capturing the effects of inflation. 
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Figure 6: Line plot of time fixed effects from model (9). 

 

We also used the results from model (9) to predict the area by variety and region in 

each year. Then, we regress the differences between the actual and predicted area values on 

variables such as region, variety, varietal colour, and varietal country of origin. In doing so, we 

intend to see whether the model under- or over-predicts the area based on any of these variables, 

which could point out other variables influencing growers’ planting decisions. However, we 

do not find statistically significant results suggesting these under -or over-predictions, so the 

results are not presented here.  

Besides looking at the results of model (9), it is also important to discuss some of the 

underlying assumptions. Since this is a restricted Nerlovian supply response model, the area 

by variety and region is projected to partially adjust based on the prices that growers expect for 

the grapes of that variety in that region. These expected prices are based on the adaptive 

expectations hypothesis. The rich fixed effects structure of model (9) allows us to account for 

many unobservable variables that may affect the area planted to a variety in a region.  

Still, there are caveats to model (9). One of them is that it assumes that the changes in 

the area are a function of changes in prices, even though the decisions made by growers are 

likely to be more related to expected profits than to expected prices. Assuming that the expected 

yields are constant for each variety-by-region combination (while differing among them) 

means that the results would be the same if controlling for revenues in model (9), as opposed 

to simply controlling for prices. Indeed, using the lag of the gross revenue per hectare of variety 

𝑣 in region 𝑟 (𝑙𝑛𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑣𝑟,𝑡−1) instead of 𝑙𝑛𝑃𝑟𝑖𝑐𝑒𝑣𝑟,𝑡−1 leads to almost identical results 

(Table A.2). 

However, the same does not apply to costs. Even if assuming that the relative 

differences in the season’s costs of producing each variety in each region are constant through 

time, overall changes in costs would lead to different profits. In other words, different results 

may be expected when controlling for profits instead of revenues despite the above-mentioned 

assumptions.  

Further, on top of the differences in production costs between varieties and regions in 

each season, there are differences in the investment costs across varieties and regions, based 

on dissimilarities in plant material and production systems. These differences in investment 

costs are not considered in a Nerlovian adaptive profit expectations and partial acreage 
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adjustment framework. An example of differences in investment costs arises when a grower 

replants an existing vineyard with a new variety as opposed to planting a new vineyard from 

scratch. Our data does not specify which of these two is the case in hand. However, this 

distinction may not be important considering the model assumes that there is a representative 

grower for each variety in each region. 

The assumption of the representative grower has been criticized because the differences 

between the representative producer and the individual producers within a region can 

sometimes mislead the conclusions derived from regional-level data (Chen and Önal, 2012). 

Models with aggregated data can be limited by the unobserved heterogeneity caused by 

differences between farms within the same region (Koutchadé et al., 2018). This intra-regional 

variability can also be affected by differences in risk aversion between producers, information 

asymmetries, or credit market imperfections (Yu et al., 2017). Li et al. (2018) claim that 

regional-level data provide a good approximation of farm-level data if regions are small units 

of production and there is heterogeneity between regions. While recognizing the limitations of 

the assumption of the representative grower, we argue that these two conditions hold for most 

winegrape regions in our analysis. 

Table A.3 reports the results of a variation of model (9) in which one of the explanatory 

variables is the lag of the price of variety 𝑣 in region 𝑟 relative to the average price of all 

varieties sold in that region and year. Compared to model (9), the short-run supply elasticity is 

a bit higher (0.0888 vs 0.0744), as is the long-run elasticity (0.3971 vs 0.3334). Table A.4 

shows the results of another variation of model (9), in which the variation of the explanatory 

variables is the lag of the gross revenue per hectare of variety 𝑣 in region 𝑟 relative to the 

average revenue per hectare of all varieties sold in that region and year. These results are very 

similar to those reported in Table A.3, with the short-run supply elasticity being 0.0864 and the 

long-run elasticity being 0.3861. 

Table 2 shows the estimation results of model (10) for each of the major regions in 

South Australia. As with model (9), the high coefficients of determination show that this model 

fits the data very well, something we also expect due to the inclusion of a lag of the dependent 

variable and variety fixed effects. The coefficients of the natural logarithm of the lag of the 

dependent variable are all positive and statistically significant at the 1% level. However, only 

three coefficients of the measure of competitive advantage are statistically significant. That 

said, and as expected, more of these coefficients become significant when not computing robust 

standard errors clustered at the variety level. 
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Table 2: Estimation results of model (10). 

Region 𝑙𝑛𝑓𝑣,𝑡−1 𝑙𝑛𝐶𝐴𝑣,𝑡 Obs. R2 

 Coeff. SE Coeff. SE LR coeff.   
Adelaide Hills 0.8789*** 0.0271 0.0317 0.0439 0.2621 229 0.9974 

Adelaide Plains 0.7551*** 0.0537 0.0072 0.0299 0.0295 254 0.9840 

Barossa Valley 0.9318*** 0.0341 0.0917** 0.0356 1.3446 181 0.9988 

Clare Valley 0.8269*** 0.1039 0.0556 0.0374 0.3215 214 0.9982 

Coonawarra 0.8256*** 0.0681 -0.0432 0.0660 -0.2476 154 0.9969 

Eden Valley 0.7202*** 0.0475 0.0473 0.0521 0.1690 207 0.9960 

Langhorne Creek 0.8150*** 0.0946 0.0705 0.0520 0.3809 228 0.9961 

McLaren Vale 0.8755*** 0.0532 0.0786* 0.0380 0.6310 233 0.9987 

Padthaway 0.8571*** 0.0803 0.0163 0.0330 0.1142 199 0.9934 

Riverland 0.8798*** 0.0178 0.0580*** 0.0202 0.4821 345 0.9981 

Wrattonbully 0.7555*** 0.0483 0.0208 0.0199 0.0851 129 0.9947 

Notes: *, **, and *** denote statistical significance at the 10%, 5%, and 1% level, respectively. 

Robust standard errors clustered at the variety level. Variety fixed effects and constants omitted 

to save space. ‘LR coeff.’ stands for long-run coefficient.  

Apart from the (not statistically significant) negative coefficients of Coonawarra, the 

short- and long-run supply elasticities are in line with the results of model (10). They also have 

similar ranges to those observed in the analysis of Alston et al. (2015) for five regions of 

California. 

Model (10) shares many of the above-mentioned limitations of model (9). Overall, these 

Nerlovian partial adjustments models only explain part of the changes in the mix of winegrape 

varieties. Further, the characteristics of perennial crops suggest that growers may adjust 

towards the desired area planted to a given variety more slowly than in annual crops, as they 

may delay their planting or replanting decisions. These limitations justify other types of 

analyses, even if these analyses rely less on econometric techniques and more on the use of 

more basic but holistic analyses of descriptive statistics (such as the ones presented in Section 

3). This is even more relevant in our study, as the data on total plantings are only available for 

South Australia. 

7. Conclusion 

Australia’s varietal mix has gone through dramatic changes, showing a tendency to become 

more concentrated and similar to that of the world as a whole, favouring some key French 

varieties. Part of the similarities across regions in their varietal mix may be explained by their 

climates and the characteristics of their production systems. However, climatic similarities do 

not seem to play a fundamental role in the degree to which regional mixes are becoming more 

or less similar. 

Our supply response models show that prices and gross revenues per hectare explain 

part of the changes in the varietal mixes of South Australia’s regions. The short-run price and 

revenue elasticities (as well as relative price and revenue elasticities) are between 0.074 and 

0.089, while their long-run counterparts are between 0.333 and 0.397. These differences 

between short- and long-run elasticities, and their smallness as compared with supply response 

elasticity estimates for annual crops, are expected since viticulture is a very capital-intensive 

activity with decades-long investment horizons.  They are consistent with the smallness of 
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changes in acreages observed from year to year and the very long and slow processes of 

adjustment to prolonged changes in profitability in the industry. 

While these models are less than ideal, they are quite useful considering the lack of data 

on costs for calculating net revenues per hectare, as well as on alternative crops or land uses. 

For perennial crops, when reliable data on new plantings and removals by variety and region 

become available, they would allow more powerful supply response models to be estimated. 

Further, other variables that influence what vignerons plant are often related to growers’ 

behaviour or technical/investment issues such as differences in planting costs across varieties. 

Despite the limitations of our supply response models, our analysis shows an important 

insight: the changes in varietal mixes seem more motivated by expected revenues than by what 

may grow best for the climate of each region. In the long run, these changes may lead to 

Australia producing lower-quality wine, since winegrape varieties are often planted in regions 

that are too warm for producing high-quality wine (Puga et al., 2022b). This situation may 

worsen in the wake of climate change and with global wine demand shifting towards more 

premium wine.  

Future research could go beyond the analysis at the regional level to try to understand 

the variables influencing planting decisions at the individual vigneron level. Importantly, future 

research could also look at whether current policies are influencing vignerons’ planting 

decisions in a way that is leading to varietal choices that may not be optimal for the climate of 

each region. 
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Table A.1: Varietal similarity index (VSI), varietal concentration index (VCI), and 

area of each Australian region and state, and for the country as a whole. 

Region 2001 2022 2001 2022 2022-

2001 

2022-

2001 

Area 

(ha) 

 

VSI VSI VCI VCI ΔVSI 

* 100 

ΔVCI 2022 

Adelaide Hills 0.48 0.55 14.4 15.9 7 2 3607 

Adelaide Plains 0.55  20.8  21 374 

Alpine Valleys 0.56 0.51 15.5 12.9 -5 -3 272 

Barossa Valley 0.39 0.41 20.1 44.9 2 25 11445 

Beechworth 0.44 0.58 18 13.8 14 -4 140 

Bendigo 0.33 0.56 35.1 25.3 23 -10 631 

Big Rivers - other 0.41 0.6 13.1 22.1 19 9 605 

Blackwood Valley 0.5 0.6 17.6 18.7 10 1 314 

Canberra District 0.47 0.61 14.6 16 14 1 318 

Central Ranges - other 0.46 0.64 34.1 22.2 18 -12 390 

Central Victoria - other 0.44 0.4 18.6 47.5 -4 29 190 

Clare Valley 0.43 0.52 18.6 23.2 9 5 4973 

Coonawarra 0.43 0.59 34.1 44.7 16 11 5479 

Cowra 0.4 0.56 20.2 28.2 16 8 930 

Eden Valley 0.33 0.51 21.8 21.3 17 0 2195 

Fleurieu - other 0.42 0.64 21.2 20.2 22 -1 1820 

Geelong 0.35 0.4 20.7 25.4 4 5 464 

Geographe 0.48 0.66 16.8 14.3 18 -2 788 

Gippsland 0.42 0.47 17.8 22.6 5 5 216 

Glenrowan  0.54  23.6  24 202 

Goulburn Valley 0.44 0.64 16.9 14.5 20 -2 1211 

Grampians 0.35 0.37 26.9 54.4 2 28 634 

Granite Belt 0.45 0.63 11.7 9.1 18 -3 351 

Great Southern 0.48 0.62 15.5 18.7 15 3 2415 

Greater Perth - other 0.36 0.54 10 21.4 19 11 168 

Gundagai  0.56  32.7  33 635 

Hastings River 0.38 0.22 15.6 22 -16 6 24 

Heathcote  0.46  31.3  31 1686 

Henty 0.36 0.36 16.2 24.3 0 8 159 

Hilltops 0.43 0.59 23.2 29.9 16 7 591 

Hunter Valley 0.33 0.44 20.9 19.2 11 -2 2622 

Langhorne Creek 0.45 0.62 30.7 27.8 17 -3 5864 

Limestone Coast - other 0.48 0.7 25.4 21 23 -4 3273 

Macedon Ranges 0.49  20.7  21 141 

Manjimup  0.56  20.3  20 162 

Margaret River 0.49 0.67 15.8 16.5 17 1 5592 

McLaren Vale 0.45 0.47 21 36.7 1 16 7160 

Mornington Peninsula 0.3 0.31 25.8 38.4 1 13 901 

Mudgee 0.44 0.69 22.6 17.1 25 -5 1909 

Murray Darling - Swan 

Hill (NSW) 
0.37 0.69 13.6 11.1 32 -2 7028 
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Murray Darling - Swan 

Hill (Vic) 
0.26 0.66 16.7 14.6 40 -2 8699 

North East Victoria - 

other 
0.53 0.72 12.4 8.7 18 -4 1421 

Northern Rivers - other 0.39 0.27 13.9 52.7 -12 39 7 

Northern Slopes 0.41 0.7 20.4 13.4 30 -7 162 

Orange 0.45 0.71 20.5 13.6 26 -7 1061 

Padthaway 0.45 0.65 17.1 21.9 20 5 3608 

Peel  0.62  19  19 63 

Pemberton  0.4  30.6  31 469 

Perricoota 0.49 0.6 18.9 18.8 11 0 459 

Perth Hills 0.35 0.53 13.3 17.5 18 4 157 

Port Phillip - other 0.38 0.66 14.8 23.1 29 8 520 

Pyrenees 0.39 0.61 19.7 19.6 22 0 878 

Qld - other 0.24 0.49 32.9 24.2 25 -9 83 

Riverina 0.41 0.64 12.3 11.1 23 -1 17108 

Riverland 0.47 0.65 12 16.2 19 4 19850 

Rutherglen 0.29 0.37 19.5 18.2 7 -1 790 

SA - other 0.32 0.51 36.3 26.7 19 -10 956 

South Burnett 0.42 0.49 16.2 26.4 7 10 237 

South Coast - other 0.45 0.7 15.8 9.6 25 -6 104 

Southern Highlands 0.26  33.2  33 247 

Southern New South 

Wales - other 
0.38 0.57 19.3 25.4 19 6 46 

Strathbogie Ranges 0.52  20.1  20 536 

Sunbury 0.41 0.53 19 31.7 12 13 134 

Swan District 0.37 0.4 9.5 13.7 2 4 893 

Tasmania 0.34 0.34 21.4 29.9 0 8 2069 

Tumbarumba 0.31 0.39 30.1 28.5 8 -2 219 

Upper Goulburn 0.53  14  14 368 

WA - other 0.51 0.73 12.1 11.6 22 0 81 

Western Plains 0.44 0.58 20.6 21.6 13 1 236 

Western Victoria - 

other 
0.46 0.68 19.7 17.2 22 -2 62 

Wrattonbully 0.43 0.64 35.7 31.2 21 -5 2617 

Yarra Valley 0.44 0.46 19.8 24.4 1 5 2478 

AUSTRALIA 0.47 0.66 12 15.5 20 4  
SA 0.46 0.62   16   
NSW 0.44 0.66   22   
Vic 0.37 0.66   29   
WA 0.5 0.68   18   
Tas 0.34 0.34   0   
Qld 0.4 0.58   17   

Source: Authors' compilation based on data in Anderson sand Puga (2923a).  
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Table A.2: Estimation results of a variation of model (9) 

in which one of the explanatory variables is the lag of the 

gross revenue per hectare of variety v in region r 

(lnRevenuevr,t-1) instead of lnPricevr,t-1.  

Variable Coefficient Standard error 

lnRevenuevr,t-1 0.0744*** 0.0186 

lnAreavr,t-1 0.7741*** 0.0467 

lnAreavr,t-2 0.0027 0.0372 

Constant -0.1407 0.1904 

Time fixed effects Yes  

Variety-by-region fixed effects Yes  

R2 0.9939  

Notes: *** denotes statistical significance at the 1% level. Robust 

standard errors clustered at the variety-by-region level. 
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Table A.3: Estimation results of a variation of model (9) 

in which one of the explanatory variables is the lag of the 

price of variety v in region r relative to the average price 

of all varieties sold in that region and year 

(lnRelativePricevr,t-1) instead of lnPricevr,t-1.  

Variable Coefficient Standard error 

lnRelativePricevr,t-1 0.0888*** 0.0211 

lnAreavr,t-1 0.7726*** 0.0466 

lnAreavr,t-2 0.0038 0.0373 

Constant 0.5466*** 0.0689 

Time fixed effects Yes  

Variety-by-region fixed effects Yes  

R2 0.9939  

Notes: *** denotes statistical significance at the 1% level. Robust 

standard errors clustered at the variety-by-region level. 
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Table A.4: Estimation results of  a variation of model (9) 

in which one of the explanatory variables is the lag of the 

gross revenue per hectare of variety v in region r relative 

to the average revenue per hectare of all varieties sold in 

that region and year (lnRelativeRevenuevr,t-1) instead of 

lnPricevr,t-1.  

Variable Coefficient Standard error 

lnRelativeRevenuevr,t-1 0.0864*** 0.0202 

lnAreavr,t-1 0.0774*** 0.0465 

lnAreavr,t-2 0.0027 0.0372 

Constant 0.5641** 0.0684 

Time fixed effects Yes  

Variety-by-region fixed effects Yes  

R2 0.9939  

Notes: *** denotes statistical significance at the 1% level. Robust 

standard errors clustered at the variety-by-region level. 

 

 

 


