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Abstract

Winegrape production is very susceptible to weather conditions, with climate change presenting
significant risks to the industry. Econometric analyses can offer valuable mnsights into the effects of
past weather and chimates, and of potential future chmate changes. While econometrics 1s not the
only method for deriving such insights, there 1s considerable potential for its application, especially
given the rich (often underutilized) datasets available to the wine industry. Our article offers
recommendations on how to effectively use econometrics to assess climate impacts on the wine
industry. These recommendations are tailored to the specific characteristics of grape and wine
production. We first discuss how to apply econometrics to assess the influence of weather or
climate on wine-related outcomes. We provide insights into how to model weather and climate,
avoid omitted variable bias, and address other modelling challenges. Finally, we explain how
estimates of weather or climate impacts can be used to assess the potential effects of future climate
change on the wine industry, providing valuable insights for the development of winegrape growers’
adaptation strategies.
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1. Introduction

The weather has a prominent role in grape growing and hence in the yield and quality of wine
produced (Geppert et al., 2024). While climate change may have a positive economic impact in
cooler regions (Ashenfelter and Storchmann, 2010, 2016), the opposite may be true for warmer
regions. Most of the world’s wine production takes place in regions that are often too warm to
produce high-quality wine from the most widely planted grape varieties (Puga et al., 2022a). In this
context, econometric studies assessing climate impacts can help guide policies and strategies for
winegrowers to adapt to future changes in climates.
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Econometrics 1s not the only approach to assessing climate impacts on the wine industry. Recent
machine learning models are often useful for this purpose thanks to their predictive capabilities
(Maimaitiyiming et al., 2019). Techniques that combine inference and prediction (see Daoud and
Dubhashi (2023)) offer the potential for wine economusts to provide high-quality climate change
mmpact assessments. Crop simulation models can incorporate environmental factors rarely
observed 1 actual growing conditions that are difficult to model with other types of statistical
analyses (Antle and Stockle, 2017)." Experiments are also useful for identifying the impact of
climate variables. Another less data-driven approach consists of relying on the opinion of experts.”

Econometric analyses have the advantage of relying on data from actual winegrowing conditions,
capturing growers' actions and genuine responses to climatic circumstances. These conditions can
differ from those in controlled settings (Blanc and Reilly, 2017). Given the wealth of data that 1s
often available for the wine industry, it is possible to econometrically estimate the effect of weather
or climate on an outcome. These models can lead to useful insights for the wine industry, often at
a lower cost than when using other approaches such as field experiments. However, applying
econometrics to quantify climate impacts on the wine industry requires considering a few aspects
specific to the industry.

The aim of this article 1s to outhine how to best use econometrics to assess climate impacts on the
wine industry. More specifically, we recommend how to estimate the impact of weather, climate,
and future climate changes on grape and wine production.” In doing so, we do not intend to update
past surveys of the impacts of climate change on wine-related outcomes such as that by Ashenfelter
and Storchmann (2016), nor to analyze how climate change 1s and will be impacting the industry
(see Santos et al. (2020) and van Leeuwen et al. (2024) for reviews on that topic).

The structure of the rest of this article 1s as follows. Section 2 explains how to use econometrics to
estimate the effect of weather or chimate on a wine-related outcome. Section 3 provides important
considerations when using those estimates to quantify future impacts of climate change. Last,
section 4 concludes.

2. Estimating the Impact of Weather or Climate

It 1s possible to estimate the impact of weather or chmate on a wine-related outcome by regressing
that outcome on a set of weather or climate variables. Weather refers to atmospheric conditions

' Crop simulation models can sometimes simulate conditions that have not yet been observed, such as extreme
weather events. Yang et al. (2022) summarize crop simulation models and provide examples of cases where such
models have been used successtully to study the impact of climate change on wine-related outcomes.

* While some economists such as Pindyck (2013, 2017, 2019) strongly argue for the use of these methods, others such
as Auffhammer (2018) are more cautious and less excited about their potential. Various frameworks for measuring
expert opinion have a strong potential in wine economics. One of these frameworks is the classical method, which can
provide quantitative estimates of climate risks (Colson and Cooke, 2018).

* When looking at future climate impacts, this article focuses only on physical risks. These risks relate to the direct
impacts of climate change on the grape and wine industry. This article does not give attention to transition risks, which
are linked to the process of mitigating climate change by shifting towards a lower carbon economy due to factors such
as changes in regulations and market demand.



during a short period, such as a growing season. Climate 1s the long-term average of those
conditions over an extended period, often spanning decades.

The dependent variable of the econometric model 1s an outcome of interest. Examples of wine-
related outcomes that are common in the wine literature are grape yields (e.g., Puga et al. (2023)),
grape production (e.g., Quiroga and Iglesias (2009)), wine production (e.g., Niklas (2018)), wine
prices or quality (e.g., Ashenfelter (2012) and Oczkowski (2016)), increases in alcohol
concentration (e.g., Alston et al. (2011) and Godden et al. (2015)), and advancements in harvest
dates (e.g., Jarvis et al. (2019)).

Such an econometric model can be estimated with cross-sectional, panel, or time series data.

While a few interesting studies rely on very long time series datasets, often spanning centuries (e.g.,
Bock et al. (2013)), most studies rely on either cross-sectional or panel data. That 1s also the case in
the broader climate econometrics literature.

2.1. Choosing Weather or Climate Variables

Viticulture 1s affected by a wide range of weather variables that can have different effects
throughout the year. Table 1 provides a very simplified summary of how weather interacts with
grapevine development and the timing of those developments (1.e., phenological growth stages).
Yet even trying to account in a simplified way as to how weather affects the yield and quality of
grape production can lead to a large number of independent variables in an econometric model.
This 1s why most studies in the climate econometrics literature rely on just a few weather or climate
variables. Also, including many correlated independent variables can make 1t difficult to iterpret
their coefficients because these variables are likely to absorb explanatory power from each other.

Table 1. Positive and negative weather influences on grapevine development and phenological growth stages.
Adapted from Jones at al. (2012) and van Leeuwen et al. (2024).

Phenological | Temperature Insolation ‘Wind Precipitation
stage
Dormancy + enough chilling hours + sometimes needed to
to ensure full dormancy recharge soil moisture
and subsequent bud - too much soil moisture can
development delay leaf fall
- very low temperatures - heavy rainfall can lead to
can damage latent buds soil erosion
Vegetation + average temperatures + need enough for | - can break + adequate levels of soil
development | higher than 10°C tend to | flower shoots and moisture are needed for
favor plant growth differentiation even small proper development
- very cool periods after - too little can lead branches - too much soil moisture can
budbreak slow growth to incomplete lead to excessive vegetative
- early frosts can reduce flowering growth
yield - long wet periods can
reduce or retard bloom
- hail can damage leaves,
shoots and flowers
Berry + sufficient heat + enough needed - can dehydrate | + adequate levels of soil
development | accumulation is needed for berry set berries moisture are needed for
for berry growth + appropriate level proper development and to
+ appropriate diurnal needed for sugar reduce heat stress
temperature range 1s accumulation




needed for synthesis of + dry periods favor ideal

sugars and tannins photosynthesis, ripening,

- high temperatures can and balance

lead to heat stress - too much soil moisture can
- late frosts can reduce lead to excessive vegetative
yield growth and limit ripening

- high levels of rainfall favor
diseases and can dilute
berries

- hail can damage berries
and exacerbate the impact
of diseases

The appropriate weather variables often depend on the region. Indeed, the expected effect of the
different weather variables can be subject to various characteristics of the region, including its
climate. For example, the impact of higher temperatures has long been associated with higher-
quality wines in temperate regions such as Bordeaux (Ashenfelter, 2012; Ashenfelter et al., 2009),
but the opposite effect 1s expected in most hotter wine regions such as in Australia (Puga et al.,
2022b). The variety of climates across regions, sometimes within the same country, can make it
difficult to come up with an econometric model appropriate for all the regions within a study.

Besides depending on the region, the expected impact of weather or climate on an outcome often
depends on the grape variety. Figure 1 shows the optimal growing season temperature range for
producing high-quality wine of some of the most widely planted varieties, according to Jones et al.
(2012). While there 1s debate about these temperature ranges (van Leeuwen et al., 2013), this
figure gives an indication of how much the impact of weather on grape production differs across
varieties.
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Figure 1. Ideal growing season temperature ranges for high-quality wine production according to Jones et al.
(2012). Red varieties are in blue and white varieties are in . Authors’ compilation based on data from
Jones et al. (2012).

Discriminating weather or climate impacts by region or variety 1s often difficult, as this would
require a very large number of observations. Such large numbers are common for some broad-
acre crops, but are not commonly available in grape and wine datasets.

A widely used functional form for capturing non-linear weather or climate effects implies adding a
squared term to a weather or climate variable of interest. This leads to different estimated marginal
effects of that variable, depending on the value of the variable itself. For example, an increase in
the value of growing-season temperature can change from being beneficial in cool regions to being
detrimental i hot regions.

When using panel data, a perhaps more interesting approach consists of estimating the effect of
exposure to different levels of temperature. Schlenker and Roberts (2009) pioneered this approach
to estimate the effect of temperature exposure to different temperature intervals on the yield of
broadacre crops, showing that yield increases gradually as temperatures rise but decreases sharply
once temperatures exceed about 30°C. This specification allows for capturing the impact of
extreme temperatures and can be used in wine applications. Smith and Alston (2024) employ a
method that quantifies the impact of growing degree days at various temperature thresholds,
enabling a more accurate assessment of the effects of temperature extremes.

By assuming that temperature follows a sine curve between the minimum and maximum daily
temperature, it 1s possible to estimate similar models as long as there 1s information on minimum
and maximum daily temperature (Ortiz-Bobea, 2021). That leads to the computation of a growing
degree days variable that is different from those often used in wine research, which are based on
the difference between the average daily temperature and a cut-off value (e.g., 10°C). More
recently, Ortiz-Bobea et al. (2019) introduce a method to look at different effects of temperature
throughout the growing season.

In addition to the above-mentioned semiparametric models, there have been more recent
developments using nonparametric functions. For instance, Schuurman and Ker (2025) estimate
nonparametric models to account for nonlinear effects of weather across the yield distribution.
Machine learning techniques such as neural networks can be useful for this purpose. Some of
these methods, however, may require sample sizes that are uncommon in the wine industry.

That said, one benefit of wine-related data 1s that information 1s commonly available at the varietal
level. In such instances, it becomes feasible to estimate a model in which the dependent variable 1s
the outcome by variety, region, and year, rather than simply the regional outcome by year. As well,
there are many wine databases with large sample sizes. This leads to a large number of
observations, hence more degrees of freedom.

2.2. Avoiding Omitted Variable Bias

There are other variables that influence wine-related outcomes in addition to weather or climate
variables. When using cross-sectional models, it 1s important to account for those other relevant



variables to avoid biased estimates of the impact of chimate on an outcome. The Ricardian model,
first proposed by Mendelsohn et al. (1994), provides a theoretical framework that can be used for
partially dealing with omitted variable bias in cross-sectional models (see Mendelsohn and Massetti
(2017) for a review). This type of model has been used in wine applications when looking at the
mmpact of climate on vineyard prices (e.g., Cross et al. (2011, 2017)).

There are also other ways of decreasing the potential for omitted variable bias in a cross-sectional
model. For example, Puga et al. (2022b) use a survey on 103 viticultural practices of various wine
regions of Australia to assess more precisely the impact of temperature on grape prices, by
accounting for those practices.

By contrast, panel data models include fixed effects to account for certain unobserved factors that
might otherwise bias the results (Deschénes and Greenstone, 2007). The basic 1dea behind fixed
effects 1s that, by controlling for characteristics that do not vary by unit of observation (e.g., region)
or by time (e.g., year), it 1s possible to 1dentify the impact of the variables of interest more
accurately.

For example, in a panel data model in which the unit of observation 1s a region, the region fixed
effects attempt to capture all ime-ivariant observable and unobservable characteristics of each
region. That includes the time-invariant component of the climate.' As a result, assuming the
weather 1s appropriately represented, there 1s often less potential for omitted variable bias than in
cross-sectional models.

However, omitted variable bias could still persist in panel data models thanks to time-varying
variables. It 1s possible to control for those time-varying variables in the model, but these variables
should be strictly exogenous (Dell et al., 2014). For example, if grape yield is the outcome variable,
controlling for irrigation may be problematic because the season’s weather influences how much
growers 1rrigate their vineyard. Instead, controlling for other related variables such as water prices
may sometimes be preferable.

Adding time fixed effects to panel data models allows for a further decrease in the potential for
omitted variable bias. These fixed effects account for ime shocks that affect all regions in a given
year. While there 1s still potential for omitted variable bias due to region-specific time-varying
variables, this potential is lowered by using time fixed effects.

It may be tempting to interact groups of regions with time fixed effects as a way to account for time
shocks that are common to a group of regions. However, these group-specific fixed effects can
absorb a great amount of the weather variance, so that the residual variance i the data consists
primarily of noise (Fisher et al., 2012). Weather data are commonly subject to measurement error.
This error 1s least when the focus 1s restricted to the specific area in which the vineyards are
planted.

2.3. Other Modelling Issues

"The climate may have already been changing during the observed period. Fixed effects cannot capture a changing
climate or other structural changes that may be underway.



There are other important econometric considerations in addition to the ones mentioned above.
One such consideration implies choosing whether to estimate variables as levels or as logs. In the
climate econometrics literature, the dependent variable 1s usually specified n its natural logarithmic
form. Such a specification has advantages such as mitigating issues of heteroskedasticity, and
handling outliers or extreme values, by reducing the variable’s range (Wooldrdge et al., 2021).
Perhaps more importantly, this specification implies that the weather variables have the same
proportional impact on a wine-related outcome across observations (e.g., regions).

While most studies model the weather or climate variables in levels (Camargo and Hsiang, 2015;
Hsiang, 2016), it may be preferable to model the weather variables in their natural logarithms in
some cases. For instance, when it seems more reasonable to assume constant elasticities for a non-
negative weather variable.

When working with panel data, another important econometric consideration involves choosing
whether to estimate a dynamic model, 1.e., one incorporating a lagged dependent variable as an
imdependent variable, rather than a static model. When estimating yields, most studies do not
mclude the lag of this variable in their models. An exception 1s Chavas et al. (2019), who argue that
a dynamic approach is justified because of the dynamics of crop fertility and management. Since
grapevines are perennials, weather can influence grape production in more than one season
(Molitor and Keller, 2017), adding another reason that might justify a dynamic model. However,
modelling this 1s difficult due to the complex ways in which carbon 1s moved and allocated
throughout the vine over the years.

In other cases, such as when modelling grape or wine prices, choosing whether to add a lag of the
dependent variable can be more straightforward. The inclusion of a lag of grape or wine price in a
model may be justified because the previous and current year prices can be linked through year-to-
year changes 1n wine stocks.

To avoid biased estimates in dynamic models, it 1s possible to use the system generalized method
of moments (system GMM) estimator developed by Arellano and Bond (1991). This 1s an
example of a case in which other estimators may be more appropriate than the fixed effects
estimator, which 1s the most commonly used estimator in panel data models (Blanc and Schlenker,

2017).

The estimation strategy and choice of estimator are also very relevant and can influence the way
the estimates should be interpreted. When estimating a cross-sectional model using average
weather (or climate data), the impact of climate 1s estimated. Instead, when using panel data, what
1s estimated 1s the impact of weather. If the model 1s estimated using the fixed effects estimator (the
commonly used estimator in panel data models), what 1s estimated 1s the impact of weather shocks
(Blanc and Schlenker, 2017). These denote differences from the mean weather, and they are
considered random and exogenous.’

" This consideration can be controversial because grape growers often have expectations of the future weather of the
growing season. For example, they may know what may likely be expected based on the El Nifio-Southern Oscillation
(ENSO). Nevertheless, from a practical perspective, the main concern regarding ENSO should be whether the
number of years is sufficiently large.



Another important econometric consideration involves dealing with spatial autocorrelation. When
the data are available by wine regions, which are well delimited and distanced from each other,
there may be less need to account for spatial autocorrelation. Stll, even in those cases, not
accounting for this type of autocorrelation could result in overly confident estimates. Ortiz-Bobea
(2021) provides a well-grounded discussion on how to deal with spatial autocorrelation in climate
econometrics.

3. Quantifying Future Impacts of Climate Change

The estimates of the impact of weather or climate from an econometric model can be used to
quantify the potential consequences of climate projections. This implies using past observations to
predict how climate change will affect a wine-related outcome 1n the relatively distant future.
Therefore, the main limitation of this approach is that it assumes a ceteris paribus scenario, 1.e.,
one 1 which only the climate 1s considered to change.

Beyond the uncertainty related to variables that could change in the future other than climatic
ones, there 1s statistical uncertainty surrounding the estimates and also uncertainty in the climate
change projections. To deal with this last type of uncertainty, using different climate change
projections and emission pathways 1s good practice (Burke et al., 2015).

A potential 1ssue mvolves extrapolating outside the range of values observed in the dataset. Puga et
al. (2028) show that in their dataset some of the climate projections for the end of this century (the
orange diamonds in Figure 2) are too different from those n their data (the black circles), but that
does not seem to be a problem with the mid-century climate projections (the green squares).
Hence those authors focus only on the mid-century climate forecasts.

* Observed  * Forecasted (3041-2060) * Forecasted (2081-2100)
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Figure 2. Growing season temperature and precipitation for the observed weather values in the major
Australian wine regions, and for the climate projections for those regions for 2041-2060 and 2081-
2100. Authors’ compilation based on data from Puga et al. (2023) and climate projections from
Remenyi et al. (2020).



More uncertainty relates to the differences between what data are observed historically and what
are not observed but may occur in the future. Part of that uncertainty 1s difficult to avoid. An
example 1s the impact of carbon fertilization, which cannot be accounted for since the future levels
of carbon dioxide (CO») in the atmosphere are expected to be higher than at present (and in the
past).

Another example of an 1ssue that may not be recorded in the data relates to increasingly common
climatic events. This 1s arguably more relevant for grapevines than for annual crops because of the
perennial characteristics of grapevines. Since yields form over two consecutive seasons, the weather
i one season influences both the current and the following season (Guilpart et al., 2014). For
mstance, two consecutive years of drought may have a greater negative impact than two drought of
equal severity spread over non-consecutive years.

Using the estimates of a panel data model usually raises another important issue: not accounting
for the impact of long-run adaptation of already available technologies. This 1s because a panel data
model estimates the impact of weather shocks on an outcome. Winegrowers change practices such
as 1rrigation and winemaking techniques based on each season’s weather. Those short-run
adaptation options are captured in the estimates of the impact of weather shocks, but what is not
captured are the changes in production strategies resulting from long-run changes in climates.
Some of those adaptations will likely take place in the vineyards and wineries (Naulleau et al.,

2022; Santos et al., 2020).

In the case of wine, long-run adaptation might be less important due to the strong associations
between grape varieties and production characteristics with specific regions often i1dentified by
geographic indications (GIs), such as Protected Designations of Origin (PDOs) in Europe. These
designations not only protect the product's reputation but can regulate the production technology
as well (Melom et al., 2019). As a result, wine production is less flexible than for many other crops,
both in terms of where it takes place and how it 1s produced, even over the long run, primarily due
to marketing considerations.

That being said, in recent years, researchers have developed hybrid methods that rely on the cross-
sectional features of panel datasets for capturing long-run adaptation (see Kolstad and Moore
(2020) for a review). These approaches include long differences (e.g., Moore and Lobell (2015)),
partitioning variation (e.g., Moore and Lobell (2014), Burke and Emerick (2016)), and panels with
heterogeneous marginal effects (e.g., Butler and Huybers (2012)). Despite the possibility of getting
plausible results without taking long-run adaptation into account in the wine sector, these recently
mtroduced hybrid methods could lead to powerful insights.

4. Conclusion

Econometric models can provide estimates of the effect of weather or climate on a wine-related
outcome. Those estimates can be used to assess the potential impact of future climate changes.
Importantly, econometric models should consider the specific nature of grape and wine
production. Wine industry-specific considerations should also influence the way the estimates are
used to assess future climate risks. While this article provides an incomplete list of considerations
when assessing climate impacts, it provides some key msights into how to approach this 1ssue.



We recognize that econometrics is not the only approach for assessing climate impacts on the wine
mdustry. However, econometric analyses have numerous advantages over other approaches, such
as capturing winegrowers’ responses to climatic events. As well, many unexploited (often freely
available) datasets can be used for econometric analyses of climate impacts. These analyses can be
very helpful in shedding light on the impacts of weather and climate on the wine industry, and
thereby in designing appropriate climate adaptation strategies.
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